Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm a để biểu thức có nghĩa:
a) \(\sqrt{\dfrac{-a}{3}}\)
b) \(-\sqrt{\dfrac{1}{a^2}}\)
c) \(\sqrt{\dfrac{\left(1-a\right)^3}{a^2}}\)
d) \(\sqrt{\dfrac{a^{2^{ }}+1}{1-2a}}\)
e) \(\sqrt{a^2-1}\)
f) \(\sqrt{\dfrac{2a-1}{2-a}}\)
Cho biểu thức: \(S=\left(1+\dfrac{a}{a^2+1}\right):\left(\dfrac{1}{a-1}-\dfrac{2a}{a^3+a-a^2-1}\right)\)với \(a\ne1\)
a) Rút gọn biểu thức S.
b) Tìm GTNN của biểu thức M = (a-1).S
1.Cho\(\left\{{}\begin{matrix}a,b,c>0\\a+2b+3c=20\end{matrix}\right.\)Tìm GTNN
P=\(2a+3b+4c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
1.\(\left\{{}\begin{matrix}a,b>0\\2a+3b=4\end{matrix}\right.\)Tìm GTNN của
M=\(\dfrac{2002}{a}+\dfrac{2017}{b}+2096a-5501b\)
cho biểu thức: P=\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
a/ rút gọn p
b/CMR: nếu 0<x<1 thì p>0
c/ tìm GTLN của P
1: rút gọn \(A=\dfrac{2}{x^2-1}-\dfrac{1}{x^2+x}+\dfrac{x^2-3}{x^3-x}\); \(B=\dfrac{2}{x-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{x^2+6x+2}{x^3-1}\)
2: tìm x: \(\dfrac{4}{3}\left(x-2\right)+\dfrac{\left(x-1\right)\left(x+2\right)}{2}=3-\dfrac{5x\left(1-2x\right)}{4}\)
1. A= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
Chứng minh: A<1
bài 1 tính
a, \(\sqrt{\left(1-\sqrt{5}\right)^2}+1\)
b, \(\sqrt{3+2\cdot\sqrt{2}}-2\)
c, \(\sqrt{b^2-b+\dfrac{1}{4}}-\left(2b-\dfrac{1}{2}\right)\left(vsb\ge\dfrac{1}{2}\right)\)
d, \(\sqrt{7+2\cdot\sqrt{10}}\)
e. \(\sqrt{11-4\cdot\sqrt{7}}\)
f, \(\sqrt{x-2\cdot\sqrt{x-1}}\)
g, \(3x+\sqrt{x^2-2x+1}\)
h, \(\sqrt{y+2\sqrt{y^2-2y+1}}\) (voi y>1)
i, \(\sqrt{17-2\sqrt{32}}+\sqrt{17+2\sqrt{32}}\)
k, \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(\left(1+\dfrac{\sqrt{a}}{a+1}\right):\left(\dfrac{1}{\sqrt{a-1}}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\\ a,TìmađểbiểuthứcAcónghĩa.Rútgọn\\ b,TínhgiátrịcủaAkhia=\dfrac{2}{7+3\sqrt{5}}\\ c,TìmasaochoA< 1\)