a) \(\sqrt{x}\left(\frac{1}{\sqrt{x}}+1\right)\)
b)\(x^2\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)\)
=\(\left(\sqrt{x}+1\right)\left(x^2-1\right)\)
=\(\left(\sqrt{x}+1\right)\left(x-1\right)\left(x+1\right)\)
k mình nha
a) \(\sqrt{x}\left(\frac{1}{\sqrt{x}}+1\right)\)
b)\(x^2\left(\sqrt{x}+1\right)-\left(\sqrt{x}+1\right)\)
=\(\left(\sqrt{x}+1\right)\left(x^2-1\right)\)
=\(\left(\sqrt{x}+1\right)\left(x-1\right)\left(x+1\right)\)
k mình nha
phân tích đa thức thành nhân tử (với a b x y không âm, a> b)
a) xy - \(y\sqrt{x}\) + \(\sqrt{x}-1\)
b) \(\sqrt{ab}-\sqrt{by}+\sqrt{bx}+\sqrt{ay}\)
c) \(\sqrt{a+b}+\sqrt{a^2+b^2}\)
d) 12 - \(\sqrt{x}\) - x
Phân tích thành nhân tử
\(x+\sqrt{x}\)
\(x-\sqrt{x}\)
\(a+3\sqrt{a}-10\)
\(x\sqrt{x}+\sqrt{x}-x-1\)
\(x+\sqrt{x}-2\)
\(x-5\sqrt{x}+6\)
\(x\sqrt{x}-1\)
\(x\sqrt{x}-x+\sqrt{x}-1\)
\(x+2\sqrt{x}-15\)
\(x-2\sqrt{x}-3\)
\(a+\sqrt{a}-6\)
\(x-16\)
\(x+2\sqrt{x}+1\)
\(x-1\)
\(x-2\sqrt{x}+1\)
\(a\sqrt{a}+1\)
\(a+\sqrt{a}-2\)
\(2x-5\sqrt{x}+3\)
\(x-9\)
\(x+\sqrt{x}-6\)
phân tích đa thức thành nhân tử
\(x+2\sqrt{x-1}\) (với x≥1)
\(x-4\sqrt{x-2}+2\) ( với x ≥2)
phân tích đa thứ thành nhân từ
a)\(x\sqrt{x}+\sqrt{x}-x-1\)
b)\(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
phân tích thành nhân tử
\(a-6\sqrt{a}+9-b^2\)
\(x-9\)
\(x-7\sqrt{x}+12\)
\(x\sqrt{x}-64\)
làm chi tiết xíu giúp em ạ.
phân tích đa thức thành nhân tử
1/\(\frac{x-\sqrt{x}-7}{\sqrt{x}+3}\)
2/\(\frac{x+2\sqrt{x}}{x-2\sqrt{x}}\)
Phân tích thành nhân tử (với a, b, x, y là các số không âm)
a) \(ab+b\sqrt{a}+\sqrt{a}+1\)
b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
Phân tích các đa thức sau thành nhân tử
a, \(x\sqrt{x}+\sqrt{x}-x-1\)
b, \(\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)
c, \(\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)
d, \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)
f, \(x-2\sqrt{x-1}-a^2\)
e, \(a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)
Tìm điều kiện xác định và phân tích các đa thức sau thành nhân tử:
\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)
\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)
\(C=\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
\(D=\sqrt{x^2+3x+2}+\sqrt{x+1}+2\sqrt{x+2}+2\)