Bài 1. (2,0 điểm) Cho đa thức A(x) = –11x^5 + 4x – 12x2 + 11x^5+ 13x^2– 7x + 2.
a) Thu gọn, sắp xếp đa thức A(x) theo số mũ giảm dần của biến rồi tìm bậc, hệ số cao nhất của đa thức.
câu 1 : tìm bậc, hệ số cao nhất và hệ số tự do của đa thức : \(P=-x^3-2x^2+x^3+4x+5\)
câu 2 xác định bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức sau :
a) \(5x^2-2x+1-3x^4\)
b) \(1,5x^2-3,4x^4+0,5x^2-1\)
câu 3 :
a) Tính \(\left(\dfrac{1}{2}x^3\right)\times\left(-4x^2\right)\). tìm hệ số và bậc của đơn thức nhận được
b) Tính \(\dfrac{1}{2}x^3-\dfrac{5}{2}x^3\). tìm hệ số và bậc của đơn thức nhận được
câu 4 : cho 2 đa thức :
\(A\left(x\right)=x^3+\dfrac{3}{2}x-7x^4+\dfrac{1}{2}x-4x^2+9\) và \(B\left(x\right)=x^5-3x^2+8x^4-5x^2-x^5+x-7\)
a) thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm của biến
b) tìm bậc, hệ số cao nhất và hệ số tự do của mỗi đa thức đã cho
câu 5 : cho 2 đa thức :
\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-x^3-2x^4-4x^3\) và
\(Q\left(x\right)=3x-4x^3+8x^2-5x+4x^3+5\)
thu gọn và sắp xếp 2 đa thức trên theo lũy thừa giảm của biến
câu 6 : người ta dùng 2 máy bơm để bơm nước vào bể chứa nước. máy thứ nhất bơm mỗi giờ được \(22m^3\) nước. máy thứ 2 bơm mỗi giờ được \(16m^3\) nước. sau cả hai máy chạy trong \(x\) giờ, người ta tắt máy thứ nhất và để máy thứ 2 chạy thêm \(0,5\) giờ nữa thì bể nước đầy.
hãy viết đa thức (biến \(x\)) biểu thị dung tích của mỗi bể (\(m^3\)), biết rằng trước khi bơm trong bể có \(1,5m^3\) nước. tìm hệ số cao nhất và hệ số tự do của đa thức đó.
câu 7 : viết đa thức \(F\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
\(\cdot\) bật của \(F\left(x\right)\) bằng \(3\)
\(\cdot\) hệ số của \(x^2\) bằng hệ số của \(x\) và bằng \(2\)
\(\cdot\) hệ số cao nhất của \(F\left(x\right)\) bằng \(-6\) và hệ số tự do bằng \(3\)
câu 8 : kiểm tra câu hỏi sau :
a) \(x=\dfrac{-1}{8}\) có phải là nghiệm của đa thức \(P\left(x\right)=4x+\dfrac{1}{2}\) không
b) trong 3 số \(1;-1;2\), số nào là số nghiệm của đa thức \(Q\left(x\right)=x^2+x-2?\)
câu 9 : mẹ cho quỳnh 100 000 đồng. quỳnh mua một bộ dụng cụ học tập có giá 37 000 đồng và một cuốn sách tham khảo môn toán với giá \(x\) (nghìn đồng).
a) hãy tìm đa thức (biến \(x\)) biểu thị số tiền quỳnh còn lại (đơn vị nghìn đồng). tìm bậc của đa thức đó.
b) sau khi mua sách thì quỳnh tiêu vừa hết số tiền mẹ cho, hỏi số tiền của cuốn sách là bao nhiêu ?
Bài 1: Cho 2 đơn thức: A= 1/2.x^3.y^2.z^4 và B= -2.x.y^3.z
a) Tính tích 2 đơn thức rồi tìm bậc, nêu phần hệ số, phần biến số của đơn thức.
b) Tính giá trị của a,b với x=-1, y=1, z=2.
Bài 2: Cho đa thức:
A=-1/2.x-3x^2+4xy-x+2x^2-4xy.
a) Thu gọn đa thức A
b) Tìm bậc của đa thức A
c) Tính giá trị của a với x=-2, y=1000
d) Tìm nghiệm cuart đa thức A
Bài 3: Tìm đa thức P biết:
a) P+( x^3-3x^2+5)=9x^2-2+3x^3 )
b)( xy-x^2-y^2 )-P=( 5x^2+xy-y^2 )
c)P-( 5x^5-3x^4+4x^2-1/2 )=x^4-5x^5-x^2-1
Bài 2 : Cho hai đa thức ( -2x2y )2 và -3xy3
a) Tính tích của hai đơn thức trên . Tìm bậc , phần hệ số , phần biến của đơn thức tích.
b) Tính giá trị của hai đơn thức tích với x = -1 ; y = 2
Cho đa thức P = x^4 – 3 (x-1) + x^3 – 2x + x^2 – 1 – 2x^4
Q = -3x^2 + 2x (x+3) + 3x^4 – x(3x^2 +5 ) – 2
a) Thu gọn các đa thức trên rồi xác định hệ số cao nhất , hệ số tự do và tìm bậc của mỗi đa thức
Tìm đa thức M biết M = 3P +Q
Cho đa thức
\(M\left(x\right)=-2x^5+5x^2+7x^4-9x+8+2x^5-7x^4-4x^2+6\)
\(N\left(x\right)=7x+x-5x+2x-7x+5x+3\)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức theo lũy thừa giảm dần của biến
b) Tìm hệ số cao nhất , hệ số tự do và bậc của đa thức M(x) , N(x)
c) Tính M(x)+N(x) , M(x)- N(x)
d) Chứng tỏ x=2 là nghiệm của đa thức M ( x) nhưng k là nghiệm của đa thức N (x) . Tìm nghiệm còn lại của M(x)
i) Tìm GTNN của N(x)
xác định bậc và hệ số tự do, hệ số cao nhất của các đa thức:
$-x^4+x^3-2x^2+x-5$
$ -x^4+3x^2-2x^3+5x^5-x+1$
$ 2x^2+3x^4-x+4-3x^2-2x^4+2x+x^3$
Phân tích các đa thức sau thành nhân tử
a) 6x^2-11x+3
b) 2x^2-+3x-27
c) x^2-10x+24
d) 49x^2 +28x-5
e)2x^2-5xy-3y^2