a) \(x^2-x-2=x^2+x-2x-2=x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
a) \(x^2-x-2=x^2-2x+x-2=x\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x+1\right)\)
b) \(x^3-19x-30==x^3+2x^2-2x^2-4x-15x-30=x^2\left(x+2\right)-2x\left(x+2\right)-15\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+2x-15\right)=\left(x+2\right)\left(x-3\right)\left(x+5\right)\)
c) \(x^3-6x^2+11x-6=x^3-x^2-5x^2+5x+6x-6=x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\)
a)x2-x-2=x2-2x+x-2=x(x-2)+(x-2)=(x-2)(x+1)
b)x3-19x-30=x3+2x2-2x2-4x-15x-30=x2(x+2)-2x(x+2)-15(x+2)=(x2-2x-15)(x+2)=(x2+3x-5x-15)(x+2)=[x(x+3)-5(x+3)](x+2)=(x-5)(x+3)(x+2)=(x-5)(x+2)(x+3)
c)x3-6x2+11x-6=x3-x2-5x2+5x+6x-6=x2(x-1)-5x(x-1)+6(x-1)=(x2-5x+6)(x-1)=(x2+x-6x+6)(x-1)=[x(x+1)-6(x+1)](x-1)=(x-6)(x+1)(x-1)=(x-6)(x-1)(x+1)