HP

Phân tích đa thức thành nhân tử bằng phương pháp đặt biến phụ.

a. (x + 1)(x + 2)(x + 4)(x + 5) – 4
b. (2x + 1)^4– 3(2x + 1)^2 + 2

c.x^4 + 2x^2– 3

d.x(x + 1)(x + 2)(x + 3) – 24

giúp mình với ạ, mình đang cần gấp T^T

 

LL
25 tháng 9 2021 lúc 22:26

a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)

Đặt \(t=x^2+6x+5\)

\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)

Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)

b)  Đặt \(t=\left(2x+1\right)^2\)

\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)

Thay t:

\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)

Bình luận (0)

Các câu hỏi tương tự
GS
Xem chi tiết
NA
Xem chi tiết
NP
Xem chi tiết
DH
Xem chi tiết
CV
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
YA
Xem chi tiết
NT
Xem chi tiết