b) \(x^3-4x^2y+4xy^2-y^3\)
\(=x^3-3x^2y-x^2y+3xy^2+xy^2-y^3\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2y-xy^2\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-xy\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)
\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)