VN

Phân tích đa thức sau thành nhân tử:

a) (xy +1)^2 - (x-y)^2

b) (x + y)^3 - (x - y)^3

c) 3x^4y^2 + 3x^3y^2 + 3xy^2 + 3y^2

MY
25 tháng 7 2021 lúc 9:21

a, \(=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)

b, \(\left(x+y-x+y\right)[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2]\)

\(=2y[x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2]\)

\(=2y\left(3x^2+y^2\right)\)

c,\(=3\left(x+1\right)^2\left(x^2-x+1\right)y^2\)

Bình luận (0)
PG
25 tháng 7 2021 lúc 9:25

câu a, b áp dụng hằng đẳng thức rồi làm nha 

c) 3x4y+ 3x3y+ 3xy+ 3y2

= ( 3x4y+ 3x3y) + ( 3xy+ 3y)

= 3x3y( x + 1) + 3y( x + 1 )

= ( 3x3y+ 3y) ( x + 1 )

= 3y( x+ 1 ) ( x + 1 )

= 3y( x + 1 ) ( x2 - x + 1 ) ( x + 1 )

= 3y( x + 1 )( x2 - x + 1 )

Bình luận (0)
H24
25 tháng 7 2021 lúc 9:27

a) (xy +1)2- (x-y)2

=(xy +1-x+y)(xy+1+x-y)

b) (x + y)3 - (x - y)3

= (x+y-x+y)((x+y)2+(x+y)(x-y)+(x - y)2)

= 2y(x2+2xy+y2+x2+xy-xy-y2+x2-2xy+y2)

=2y(3x2+y2)

c) 3x4y2 + 3x3y2 + 3xy2 + 3y2

=3y2(x4+x3+x+1)

= 3y2(x3(x+1)+(x+1)

= 3y2(x+1)(x3+1)

ko bt đúng ko

Bình luận (0)
NT
25 tháng 7 2021 lúc 23:49

a) Ta có: \(\left(xy+1\right)^2-\left(x-y\right)^2\)

\(=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

b) Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=2y^3+6x^2y\)

c) Ta có: \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=3y^2\left(x^4+x^3+x+1\right)\)

\(=3y^2\left(x+1\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
TQ
Xem chi tiết
MT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
LL
Xem chi tiết