Tìm n tự nhiên thỏa mãn \(\sqrt{4n+1}\in N\)
Tìm các số tụ nhiên n thỏa mãn \(\sqrt{n+2}+\sqrt{n^3+1} \in \mathbb{N}\)
Tìm các số tụ nhiên n thỏa mãn \(\sqrt{n+2}+\sqrt{n^3+1} \in \mathbb{N}\)
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
Tìm \(m,n\in Z\) thỏa mãn \(m\left(m+1\right)\left(m+2\right)=n^2\)
Cho \(n\in N\).CMR:\(\sqrt{\left(2n+1\right)^2}+\sqrt{4n^2}=\left(2n+1\right)^2-4n^2\).
Viết đẳng thức trên với n=1,2,3,4,5,6,7
Tìm n thỏa mãn \(A=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+...+\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}\)
Giả sử n là số tựnhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh 4n^3−5n−1 không là số chính phương
Tìm \(n\in N\) sao cho C=\(\sqrt{n+2}+\sqrt{n+\sqrt{n+2}}\) \(\in Z\)