TN

Nhờ mn giúp em vs ạ. Em cảm ơn nhìuloading...

NT

a: Xét (O) có

ΔABN nội tiếp

AB là đường kính

Do đó: ΔABN vuông tại N

=>AN\(\perp\)NB tại N

=>BN\(\perp\)AM tại N

Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

=>AH\(\perp\)HB tại H

=>BH\(\perp\)AD tại H

Xét ΔBAM vuông tại B có BN là đường cao

nên \(AN\cdot AM=AB^2\left(1\right)\)

Xét ΔABD vuông tại B có BH là đường cao

nên \(AH\cdot AD=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AN\cdot AM=AH\cdot AD\)

c: ta có: ΔOAN cân tại O

mà OI là đường trung tuyến
nên OI\(\perp\)AN

Xét ΔIAO vuông tại I và ΔNBM vuông tại N có

\(\widehat{IAO}=\widehat{NBM}\left(=90^0-\widehat{AMB}\right)\)

Do đó: ΔIAO~ΔNBM

Xét tứ giác OIMB có

\(\widehat{OBM}+\widehat{OIM}=90^0+90^0=180^0\)

nên OIMB là tứ giác nội tiếp

=>\(\widehat{MOB}=\widehat{MIB}\)

Xét ΔOBM vuông tại B và ΔINB vuông tại N có

\(\widehat{BOM}=\widehat{NIB}\left(cmt\right)\)

Do đó: ΔOBM~ΔINB

 

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
1N
Xem chi tiết
AN
Xem chi tiết
CG
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết