Em cần gấp ạ, em cảm ơn
Em cần gấp ạ, em cảm ơn
giải giúp mình với, cảm ơn ạ!!
Cho tam giác nhọn ABC, đường cao AD (D thuộc BC). Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Chứng minh rằng:
1. Hai tam giác AMN và ACB đồng dạng.
2. MN=AD.sin BAC
Giúp mình câu 2 với ạ, mình đang cần gấp. Mình cảm ơn ạ
ai giúp mình bài này với được ko ạ, mình cảm ơn ạ!
Cho tam giác ABC vuông tại A (AB>AC). Kẻ đường cao Ah
a) \(\dfrac{AB^2}{BH}=\dfrac{AC^2}{CH}\)
b)Vẽ AD là tia phân giác góc BAH Chứng minh tam giác ACD câvà DH.DC = BD.HC
Giúp vs mn ui,mình cảm ơn nhìu
tính
A= cot 48 . cot 62 + tan 60
B=sin^6 x +cos^6 x +3sin^2 x .cos^2 x
(mình mới học tỉ số lượng giác nên chưa thuần thục lắm nhờ mn giúp mình)
Cho tam giác ABC vuông tại A.Gọi G là trọng tâm của tam giác. Một đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại E và F
CMR: \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\ge\dfrac{9}{BC^2}\)
Giúp e với ạ cảm ơn nhiều !
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn