Bài 5: Giải bài toán bằng cách lập hệ phương trình

CL
Một thửa ruộng hình chữ nhật có chiều dài gấp ba lần chiều rộng. Biết rằng nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m. Tính diện tích của thửa rộng đó.
MN
5 tháng 2 2021 lúc 19:26

Gọi: chiều dài ban đầu : 3a (m) , chiều rộng ban đầu : a (m) 

Nếu tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng 20m : 

( 3a - 5 ) - ( a+ 3 ) = 20 

=> a = 14

Diện tích thửa ruộng : 

S = 14 x 3 x 14 = 588 (m2)

Bình luận (0)
NT
5 tháng 2 2021 lúc 21:11

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng(Điều kiện: a>0; b>0; \(a\ge b\))

Vì chiều dài gấp ba lần chiều rộng nên ta có phương trình: a=3b(1)

Vì khi tăng chiều rộng thêm 3m và giảm chiều dài đi 5m thì chiều dài vẫn hơn chiều rộng là 20m nên ta có phương trình:

\(\left(a-5\right)-\left(b+3\right)=20\)

\(\Leftrightarrow a-5-b-3-20=0\)

\(\Leftrightarrow a-b-28=0\)

\(\Leftrightarrow a-b=28\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a=3b\\a-b=28\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-3b=0\\a-b=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2b=-28\\a-3b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=14\\a=3\cdot14=42\end{matrix}\right.\)(thỏa ĐK)

Vậy: Chiều dài và chiều rộng của thửa ruộng lần lượt là 42m và 14m

Diện tích thửa ruộng là: \(42\cdot14=588\left(m^2\right)\)

Bình luận (0)
H24
16 tháng 2 2021 lúc 11:08

Câu trả lời:

Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; a≥ba≥b)

Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: a−b=5a−b=5(1)

Diện tích ban đầu của thửa ruộng là: a⋅b(\(m^2\))

Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi 180\(^{m^2}\)nên ta có phương trình:

(a−5)(b−4)=ab−180

⇔ab−4a−5b+20−ab+180=0⇔ab−4a−5b+20−ab+180=0

⇔−4a−5b+200=0⇔−4a−5b+200=0

⇔−4a−5b=−200⇔−4a−5b=−200

⇔4a+5b=200⇔4a+5b=200(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}a-b=5\\4a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\4\left(5+b\right)+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\20+4b+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\9b=200-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5+b\\9b=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=25\\b=20\end{matrix}\right.\)

Diện tích của thửa ruộng đó là: 

S=a⋅b=25⋅20=500(\(m^2\))

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TH
Xem chi tiết
DT
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
VL
Xem chi tiết
19
Xem chi tiết
CL
Xem chi tiết
DT
Xem chi tiết