Đáp án B
Số phẩn tử không gian mẫu là
Gọi A là biến cố “Hai học sinh A, B ngồi cạnh nhau”.
Chọn 1 bàn để xếp hai học sinh A, B có 15 cách.
Xếp A, B ngổi vào bàn được chọn có 2! cách.
Xếp 28 học sinh còn lại có 28! cách.
Vậy
Do đó
Đáp án B
Số phẩn tử không gian mẫu là
Gọi A là biến cố “Hai học sinh A, B ngồi cạnh nhau”.
Chọn 1 bàn để xếp hai học sinh A, B có 15 cách.
Xếp A, B ngổi vào bàn được chọn có 2! cách.
Xếp 28 học sinh còn lại có 28! cách.
Vậy
Do đó
Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5học sinh trường X và 5 học sinh trường Y vào bàn nói trên. Tính xác suất để bất cứ hai học sinh nào ngồi đối diện nhau đều khác trường với nhau.
A . 2 63
B . 4 63
C . 8 63
D . 5 63
Có một dãy ghế gồm 6 ghế. Xếp ngẫu nhiên 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B, 2 học sinh lớp C ngồi vào dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để không có học sinh lớp C nào ngồi cạnh nhau bằng
A . 2 3
B . 1 3
C . 5 6
D . 1 5
Có một dãy ghế gồm 6 ghế. Xếp ngẫu nhiên 6 học sinh, gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C ngồi vào dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để không có học sinh lớp C nào ngồi cạnh nhau bằng
Sắp xếp 12 học sinh của lớp 12A gồm 6 học sinh nam và 6 học sinh nữ vào một bàn dài gồm có hai dãy ghế đối diện nhau (mỗi dãy gồm có 6 chiếc ghế) để thảo luận nhóm. Tính xác suất để hai học sinh ngồi đối diện nhau và cạnh nhau luôn khác giới
A.
B.
C.
D.
Có hai dãy ghế đối diện nhau, mỗi dãy có bốn ghế. Xếp ngẫu nhiên 8 học sinh, gồm 4 nam và 4 nữ, ngồi vào hai dãy ghế sao cho mỗi ghế có đúng một học sinh ngồi. Xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ và không có hai học sinh cùng giới ngồi cạnh nhau bằng
A . 8 35
B . 1 35
C . 2 35
D . 4 35
Xếp chỗ cho 6 học sinh trong đó có học sinh A và 3 thầy giáo vào 9 ghế kê thành hàng ngang (mỗi ghế xếp một người). Tính xác suất sao cho mỗi thầy giáo ngồi giữa 2 học sinh và học sinh A ngồi ở một trong hai đầu hàng.
A . 5 252
B . 5 126
C . 5 42
D . Đ á p á n k h á c
Trong một phòng học, có 36 cái bàn rời nhau được đánh số từ 1 đến 36, mỗi bàn dành cho 1 học sinh. Các bàn được xếp thành một hình vuông có kích thước 6x6. Cô giáo xếp tuỳ ý 36 học sinh của lớp vào các bàn, trong đó có hai bạn A và B. Xác suất để A và B ngồi ở hai bàn xếp cạnh nhau bằng (theo chiều ngang hoặc chiều dọc).
A . 2 21
B . 2 7
C . 4 35
D . 6 35
Trong một phòng học, có 36 cái bàn rời nhau được đánh số từ 1 đến 36, mỗi bàn dành cho 1 học sinh. Các bàn được xếp thành một hình vuông có kích thước 6×6. Cô giáo xếp tuỳ ý 36 học sinh của lớp vào các bàn, trong đó có hai bạn A và B. Xác suất để A và B ngồi ở hai bàn xếp cạnh nhau bằng (theo chiều ngang hoặc chiều dọc)
Trước kì thi học sinh giỏi, nhà trường tổ chức buổi gặp mặt 10 em học sinh trong đội tuyển. Biết các em đó có số thứ tự trong danh sách lập thành cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ được ngồi một học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.
A . 1 954
B . 1 126
C . 1 945
D . 1 252