Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

ND

Một oto đi từ A đến B với vận tốc và thời gian dự định. Nếu oto tăng vận tốc lên 8km/h thì đến B sớm hơn 1h. Nếu giảm vận tốc 4km/ thì đến B chậm hơn dự định 40 phút. Tính thời gian và vận tốc dự định...(giải theo cách laapj hpt)

NT
24 tháng 2 2021 lúc 20:28

Gọi a(giờ) và b(km/h) lần lượt là thời gian và vận tốc dự định(Điều kiện: a>0; b>0)

Vì khi ô tô tăng vận tốc lên 8km/h thì đến B sớm hơn 1h nên ta có phương trình:

\(\left(a-1\right)\left(b+8\right)=ab\)

\(\Leftrightarrow ab+8a-b-8=ab\)

\(\Leftrightarrow8a-b=8\)(1)

Vì khi ô tô giảm vận tốc 4km/h thì đến B chậm hơn dự định 40 phút nên ta có phương trình:

\(\left(a+\dfrac{2}{3}\right)\left(b-4\right)=ab\)

\(\Leftrightarrow ab-4a+\dfrac{2}{3}b-\dfrac{8}{3}=ab\)

\(\Leftrightarrow-4a+\dfrac{2}{3}b=\dfrac{8}{3}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}8a-b=8\\-4a+\dfrac{2}{3}b=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a-b=8\\-8a+\dfrac{4}{3}b=\dfrac{16}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{3}b=\dfrac{40}{3}\\8a-b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=40\\8a=8+b=48\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b=40\end{matrix}\right.\)(thỏa ĐK)

Vậy: Thời gian dự định là 6 giờ

Vận tốc dự định là 40km/h

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
TH
Xem chi tiết
QH
Xem chi tiết
MK
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
XL
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết