Ôn tập chương 1: Căn bậc hai. Căn bậc ba

MD

Một hình chữ nhật có chiều dài hơn chiều rộng 15m. Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới kém diện tích cũ 42m2. Tính chiều dài và chiều rộng.

H24
25 tháng 2 2021 lúc 16:02

Gọi chiều dài và chiều rộng của hình chữ nhật là x(m) và y(m)

(ĐK: x > 15; x > y)

Chiều dài hơn chiều rộng 15m nên x - y = 15 (1)

Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới kém diện tích cũ 42m2 nên ta có pt:

xy - (x+4)(y-3) = 42

⇔ xy - xy + 3x - 4y + 12 = 42

⇔ 3x - 4y = 30 (2)

Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}x-y=15\\3x-4y=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x-4y=60\\3x-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\\3\cdot30-4y=30\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=30\left(tmđk\right)\\y=15\left(tmđk\right)\end{matrix}\right.\)

Vậy chiều dài và chiều rộng của hình chữ nhật lần lượt là 30m và 15m

Bình luận (0)
ND
25 tháng 2 2021 lúc 16:05

Gọi x là chiều rộng của HCN (x>0) (m)

=> Chiều dài: 15+x (m)

Diện tích thực tế: x.(15+x) (m2)

Nếu tăng chiều dài thêm 4m, giảm chiều rộng đi 3m thì diện tích mới sẽ là: (x-3).(15+x+4)= (x-3).(19+x)

Vì diện tích giả sử kém diện tích cũ 42m2 nên ta có pt:

x.(15+x)= [(x-3).(19+x)]+42

<=>x2 +15x -x2 -16x= 42-57

<=> -x =-15

<=>x=15(TM)

Vậy chiều rộng HCN có độ dài 15m, chiều dài HCN có độ dài 30m.

 

Bình luận (0)

Các câu hỏi tương tự
MD
Xem chi tiết
MD
Xem chi tiết
TL
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết