Bài 5: Giải bài toán bằng cách lập hệ phương trình

TN

Một canô xuôi dòng từ bến A lúc 5h30 để đến B và nghỉ lại để dỡ hàng sau đó quay về A.đến A lúc 13h45phút.tính khoảng cách từ bến A đến B biết rằng vận tốc canô khi nước yên lặng là 24,3km/h và vận tốc lúc nước chảy là 2,7km/h

NL
3 tháng 3 2020 lúc 12:44

Đổi : 13giờ45phút= 13,75 giờ,5giờ30phút = 5,5 giờ

- Gọi khoảng cách từ bến A đến bến B là x ( km, x > 0 )

- Tổng thời gian canô đi và về bến A là : 13,75 - 5,5 = 8,25 ( giờ )

- Vận tốc ca nô xuôi dòng là : \(24,3+2,7=27\) ( km/h )

- Vận tốc ca nô ngược dòng là : \(24,3-2,7=21,6\) ( km/h )

- Thời gian ca nô đi từ bến A đến B là : \(\frac{x}{27}\) ( giờ )

- Thời gian ca nô ngược dòng từ bến B về A là : \(\frac{x}{21,6}\) ( giờ )

Theo đề bài anô xuôi dòng từ bến A lúc 5h30 để đến B và nghỉ lại để dỡ hàng sau đó quay về A đến A lúc 13h45phút hết \(\frac{33}{4}\) giờ nên ta có phương trình : \(\frac{x}{27}+\frac{x}{21,6}=\frac{33}{4}\)

=> \(\frac{4x}{108}+\frac{5x}{108}=\frac{891}{108}\)

=> \(4x+5x=891\)

=> \(x=99\left(TM\right)\)

Vậy khoảng cách từ bến A đến bến B là 99km .

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CC
Xem chi tiết
TL
Xem chi tiết
PB
Xem chi tiết
LA
Xem chi tiết
HS
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết
LP
Xem chi tiết