LL

mong mn giúp nốt bài này ạ

loading...

NT
20 tháng 10 2023 lúc 19:35

a: Xét ΔABC vuông tại A có \(cosB=\dfrac{AB}{BC}=\dfrac{1}{2}\)

nên \(\widehat{B}=60^0\)

b:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=6^2-3^2=27\)

=>\(AC=3\sqrt{3}\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{6}\)

=>\(\dfrac{AD}{1}=\dfrac{CD}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{1}=\dfrac{CD}{2}=\dfrac{AD+CD}{1+2}=\dfrac{3\sqrt{3}}{3}=\sqrt{3}\)

=>\(\left\{{}\begin{matrix}AD=\sqrt{3}\simeq1,7\left(cm\right)\\CD=2\sqrt{3}\simeq3,5\left(cm\right)\end{matrix}\right.\)

c: ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot6=3\cdot3\sqrt{3}=9\sqrt{3}\)

=>\(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

d: ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\left(1\right)\)

ΔADB vuông tại A có AE là đường cao

nên \(BE\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BE\cdot BD\)

=>\(\dfrac{BH}{BD}=\dfrac{BE}{BC}\)

Xét ΔBHE và ΔBDC có

BH/BD=BE/BC

\(\widehat{HBE}\) chung

Do đó: ΔBHE đồng dạng với ΔBDC

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
GG
Xem chi tiết
MH
Xem chi tiết
AN
Xem chi tiết