ĐKXĐ: x^2-1>0
=x>1 hoặc x<-1
\(y'=\dfrac{\left(2x-3\right)'\sqrt{x^2-1}-\dfrac{\left(x^2-1\right)'}{2\sqrt{x^2-1}}\cdot\left(2x-3\right)}{x^2-1}\)
\(=\dfrac{2\sqrt{x^2-1}-\dfrac{x\left(2x-3\right)}{\sqrt{x^2-1}}}{x^2-1}\)
\(=\dfrac{2x^2-2-2x^2+3x}{\sqrt{x^2-1}\cdot\left(x^2-1\right)}=\dfrac{3x-2}{\sqrt{x^2-1}\left(x^2-1\right)}\)
x>1
=>3x-2>0
=>y'>0
=>HS đồng biến
x<-1
=>3x-2<0
=>HS nghịch biến