Bài 2:
a) \(\dfrac{18^5}{4^5\cdot9^5}=\dfrac{18^5}{36^5}=\dfrac{1}{2^5}=\dfrac{1}{32}\)
b) \(\dfrac{16^2}{3^2\cdot4^4}=\dfrac{4^2}{3^2\cdot4^4}=\dfrac{1}{3^2\cdot4^2}=\dfrac{1}{144}\)
c) \(\dfrac{8^5\cdot12^4}{4^3\cdot8^6}=\dfrac{1}{8}\cdot\dfrac{4^4\cdot3^4}{4^3}=\dfrac{1}{8}\cdot4\cdot3^4=\dfrac{1}{2}\cdot81=\dfrac{81}{2}\)
a)\(\dfrac{18^5}{4^5.9^5}\)=\(\dfrac{\left(2.3^2\right)^5}{\left(2^2\right)^5.\left(3^2\right)^5}\)=\(\dfrac{2^5.3^{10}}{2^{10}.3^{10}}\)=\(\dfrac{1}{2^5}\)=\(\dfrac{1}{32}\)
b)\(\dfrac{16^2}{3^2.4^4}\)=\(\dfrac{\left(4^2\right)^2}{3^2.4^4}\)=\(\dfrac{4^4}{3^2.4^4}\)=\(\dfrac{1}{3^2}\)=\(\dfrac{1}{9}\)
c)\(\dfrac{8^5.12^4}{4^3.8^6}\)=\(\dfrac{\left(2^3\right)^5.\left(2^2.3\right)^4}{\left(2^2\right)^3.\left(2^3\right)^6}=\dfrac{2^{15}.2^8.3^4}{2^6.2^{18}}=\dfrac{2^{23}.3^4}{2^{24}}=\dfrac{3^4}{2}=\dfrac{81}{2}\)
d)\(\dfrac{8^2+3.4^2+128}{2^5}=\dfrac{\left(2^3\right)^2+3.\left(2^2\right)^2+2^7}{2^5}=\dfrac{2^6+3.2^4+2^7}{2^5}=\dfrac{2^4.\left(2^2+3+2^3\right)}{2^5}=\dfrac{2^4.\left(4+3+8\right)}{2^5}=\dfrac{2^4.15}{2^5}=\dfrac{15}{2}\)