Bài 5: Đạo hàm cấp hai

NN

mọi người giúp mình câu này với. tìm đạo hàm của hàm số sau theo biến y. f(x,y)= y.exy.siny hoặc tìm đạo hàm cấp 2 của hs sau theo biến x,y. f(x,y)= exy.siny

AH
1 tháng 3 2018 lúc 15:15

Lời giải:

Tìm đạo hàm theo biến $y$, bạn chỉ cần coi $x$ là một tham số rồi sử dụng công thức như bình thường thôi.

\(f(y)=y.e^{xy}.\sin y\)

\(\Rightarrow f'(y)=(y.e^{xy})'\sin y+y.e^{xy}(\sin y)'\)

\(=[y'.e^{xy}+y(e^{xy})']\sin y+y.e^{xy}.\cos y\)

\(=(e^{xy}+yxe^{xy})\sin y+y.e^{xy}\cos y\)

----------------------------------

Tính đạo hàm cấp 2.

Theo biến $x$

\(f(x)=e^{xy}\sin y\)

\(\Rightarrow f'(x)=\sin y(e^{xy})'=\sin y.ye^{xy}\)

\(\Rightarrow f''(x)=(y\sin y.e^{xy})'=y\sin y(e^{xy})'=y^2\sin y.e^{xy}\)

Theo biến $y$

\(f(y)=e^{xy}.\sin y\)

\(\Rightarrow f'(y)=(e^{xy})'\sin y+(\sin y)'e^{xy}\)

\(=x.e^{xy}\sin y+\cos y.e^{xy}\)

\(\Rightarrow f''(y)=(xe^{xy}.\sin y+\cos y.e^{xy})'\)

\(=(x.e^{xy}\sin y)'+(\cos y.e^{xy})'\)

\(=(x.e^{xy})'\sin y+(\sin y)'.xe^{xy}+(\cos y)'e^{xy}+\cos y(e^{xy})'\)

\(=x^2e^{xy}.\sin y+\cos y.x.e^{xy}-\sin y.e^{xy}+x\cos y.e^{xy}\)

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết