\(Câu3\)
\(a^3+1+1\ge^{AM-GM}3\sqrt[3]{c^3.1.1}=3a\) \(\left(1\right)\)
\(b^3+1+1\ge^{AM-GM}3\sqrt[3]{b^3.1.1}=3b\) \(\left(2\right)\)
\(c^3+1+1\ge^{AM-GM}3\sqrt[3]{c^3.1.1}=3c\) \(\left(3\right)\)
\(Cộng\) \(\left(1\right),\left(2\right),\left(3\right)\) \(ta\) \(được\) :
\(a^3+b^3+c^3+1+1+1+1+1+1\ge3\left(a+b+c\right)\)
⇔\(a^3+b^3+c^3\ge3.3-6\) \(=3\) \(vì\) \(a+b+c=3\)
\(Đẳng\) \(thức\) \(xảy\) \(ra\)⇔ \(a=b=c=1\)
Bài 1:
a) Đặt n2+7n+1=k2
=>4n2+28n+4=4k2
=>(4n2+28n+49)-4k2=45
=>(2n+7)2-4k2=45
=>(2n-2k+7)(2n+2k+7)=45
*Vì 2n+2k+7>2n-2k+7>0 và chúng là những số tự nhiên nên ta có thể viết: (2n-2k+7)(2n+2k+7)=1.45 hoặc 3.15
=>2n-2k+7=1 ; 2n+2k+7=45 hay 2n-2k+7=3 ; 2n+2k+7=15
=> n=1 thì k=3 ; n=8 thì k=121
Câu 2 \(a+b\ge4=>ab\le4\)
\(a+b+\dfrac{1}{a}+\dfrac{1}{b}\ge4+\dfrac{a+b}{ab}=4+1=5\)
Bài 2:
b) x2+4x=y4+4y ⇔ x2+4x+1=y4+4y+1 ⇔(2x+1)2=(2y2+1)2
⇔(2y2+1)2-(2x+1)2 =0 ⇔(2y2-2x)(2y2+2x+2)=0
⇔2y2-2x=0 hay 2y2+2x+2=0
⇔y2-x=0 hay y2+x+2=0
⇔x=y=0 hay x=y=1.
Bài 2: (chỉnh lại)
b) x2+4x=y4+4y ⇔ x2+4x+4=y4+4y+4 ⇔(x+2)2=(y2+2)2
⇔(y2+2)2-(x+2)2 =0 ⇔(y2-x)(y2+x+4)=0
⇔y2-x=0 hay y2+x+4=0
⇔y2-x=0 hay y2+x+4=0
Bài 2:
b) x2+4x=y4+4y ⇔ x2+4x+1=y4+4y+1 ⇔(2x+1)2=(2y2+1)2
⇔(2y2+1)2-(2x+1)2 =0 ⇔(2y2-2x)(2y2+2x+2)=0
⇔2y2-2x=0 hay 2y2+2x+2=0
⇔y2-x=0 hay y2+x+2=0
⇔y=\(\sqrt{x}\)