NA


 loading...
                                       mọi người giải giúp em với ạ

H24
26 tháng 5 2023 lúc 14:26

\(2/\)

\(a,\) Rút gọn

\(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\left(dkxd:x\ne4,x\ge0\right)\)

\(=\dfrac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{x+\left(\sqrt{x}+2\right)+\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(b,\) Để \(A>1\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}>1\)

 \(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-2}-1>0\) 

 \(\Leftrightarrow\dfrac{\sqrt{x}-\left(\sqrt{x}-2\right)}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\sqrt{x}-\sqrt{x}+2>0\)

\(\Leftrightarrow2>0\left(LD\right)\)

Vậy với mọi giá trị x thì \(A>1\)

\(3/\)

\(x^2-2\left(m+1\right)x+m^2+3m-1=0\)

\(\Delta=b^2-4ac=\left[-2\left(m+1\right)\right]^2-4\left(m^2+3m-1\right)\)

                      \(=4\left(m^2+2m+1\right)-4\left(m^2+3m-1\right)\)

                       \(=4m^2+8m+4-4m^2-12m+4\)

                       \(=-4m+8\)

Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta>0\Leftrightarrow-4m+8>0\Leftrightarrow-4m>-8\Leftrightarrow m< 2\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m+1\right)=2m+2\\x_1x_2=\dfrac{c}{a}=m^2+3m-1\end{matrix}\right.\)

Ta có : \(x_1^2+x_2^2=10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-10=0\)

\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m-1\right)-10=0\)

\(\Leftrightarrow4m^2+8m+4-2m^2-6m+2-10=0\)

\(\Leftrightarrow2m^2+2m-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\left(tmdk\right)\\m=-2\left(tmdk\right)\end{matrix}\right.\)

Vậy \(m=1,m=-2\) thì thỏa mãn đề bài.

 

Bình luận (1)
NT
26 tháng 5 2023 lúc 14:19

3:

a: loading...

b: Δ=(2m+2)^2-4(m^2+3m-1)

=4m^2+8m+4-4m^2-12m+4=-4m+8

Để pt có hai nghiệm pb thì -4m+8>0

=>m<2

x1^2+x2^2=10

=>(x1+x2)^2-2x1x2=10

=>4m^2+8m+4-2m^2-6m+2=10

=>2m^2+2m-4=0

=>m^2+m-2=0

=>m=-2 hoặc m=1

 

 

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
HA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LJ
Xem chi tiết
LH
Xem chi tiết
TN
Xem chi tiết