Ẩn danh

loading...  Mình cần gấp ạ

NT
27 tháng 8 2024 lúc 17:29

a: -1<=sinx<=1

=>-1-2<=sinx-2<=1-2

=>-3<=y<=-1

\(y_{min}=-3\) khi sin x=-1

=>\(x=-\dfrac{\Omega}{2}+k2\Omega\)

\(y_{max}=-1\) khi sinx=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\) 

b: \(y=sinx+cosx=\sqrt{2}\cdot sin\left(x+\dfrac{\Omega}{4}\right)\)

\(-1< =sin\left(x+\dfrac{\Omega}{4}\right)< =1\)

=>\(-\sqrt{2}< =\sqrt{2}\cdot sin\left(x+\dfrac{\Omega}{4}\right)< =\sqrt{2}\)

=>\(-\sqrt{2}< =y< =\sqrt{2}\)

\(y_{min}=-\sqrt{2}\) khi \(sin\left(x+\dfrac{\Omega}{4}\right)=-1\)

=>\(x+\dfrac{\Omega}{4}=-\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=-\dfrac{3}{4}\Omega+k2\Omega\)

\(y_{max}=\sqrt{2}\) khi \(sin\left(x+\dfrac{\Omega}{4}\right)=1\)

=>\(x+\dfrac{\Omega}{4}=\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=\dfrac{\Omega}{4}+k2\Omega\)

c: \(y=4\cdot sinx-3\cdot cosx-5\)

\(=5\left(\dfrac{4}{5}\cdot sinx-\dfrac{3}{5}\cdot cosx\right)-5\)

\(=5\cdot\left(sinx\cdot cos\alpha-cosx\cdot sin\alpha\right)-5\)(Với \(cos\alpha=\dfrac{4}{5};sin\alpha=\dfrac{3}{5}\))

\(=5\cdot sin\left(x-\alpha\right)-5\)

\(-1< =sin\left(x-\alpha\right)< =1\)

=>\(-5< =5\cdot sin\left(x-\alpha\right)< =5\)

=>\(-10< =5\cdot sin\left(x-\alpha\right)-5< =0\)
=>-10<=y<=0

\(y_{min}=-10\) khi \(sin\left(x-\alpha\right)=-1\)

=>\(x-\alpha=-\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=-\dfrac{\Omega}{2}+k2\Omega+\alpha\)

\(y_{max}=0\) khi \(sin\left(x-\alpha\right)=1\)

=>\(x-\alpha=\dfrac{\Omega}{2}+k2\Omega\)

=>\(x=\alpha+\dfrac{\Omega}{2}+k2\Omega\)

 

g: \(y=cos5x+cos\left(5x-\dfrac{\Omega}{3}\right)\)

\(=cos5x+cos5x\cdot cos\left(\dfrac{\Omega}{3}\right)+sin5x\cdot sin\left(\dfrac{\Omega}{3}\right)\)

\(=\dfrac{3}{2}\cdot cos5x+\dfrac{\sqrt{3}}{2}\cdot sin5x\)

\(=\sqrt{3}\left(\dfrac{\sqrt{3}}{2}\cdot cos5x+\dfrac{1}{2}\cdot sin5x\right)\)

\(=\sqrt{3}\cdot sin\left(5x+\dfrac{\Omega}{3}\right)\)

\(-\sqrt{3}< =\sqrt{3}\cdot sin\left(5x+\dfrac{\Omega}{3}\right)< =\sqrt{3}\)

=>\(-\sqrt{3}< =y< =\sqrt{3}\)

\(y_{min}=-\sqrt{3}\) khi \(sin\left(5x+\dfrac{\Omega}{3}\right)=-1\)

=>\(5x+\dfrac{\Omega}{3}=-\dfrac{\Omega}{2}+k2\Omega\)

=>\(5x=-\dfrac{5}{6}\Omega+k2\Omega\)

=>\(x=-\dfrac{\Omega}{6}+\dfrac{k2\Omega}{5}\)

\(y_{max}=\sqrt{3}\) khi \(sin\left(5x+\dfrac{\Omega}{3}\right)=1\)

=>\(5x+\dfrac{\Omega}{3}=\dfrac{\Omega}{2}+k2\Omega\)

=>\(5x=\dfrac{\Omega}{6}+k2\Omega\)

=>\(x=\dfrac{\Omega}{30}+\dfrac{k2\Omega}{5}\)

f: \(y=cos^4x-sin^4x\)

\(=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\)

\(=cos^2x-sin^2x=cos2x\)

Vì -1<=cos2x<=1

nên -1<=y<=1

\(y_{min}=-1\) khi cos2x=-1

=>\(2x=\Omega+k2\Omega\)

=>\(x=\dfrac{\Omega}{2}+k\Omega\)

\(y_{max}=1\) khi cos2x=1

=>\(2x=k2\Omega\)

=>\(x=k\Omega\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NN
Xem chi tiết
NP
Xem chi tiết