NH

mếu 2 vòi nước cùng chảy vào 1 bế thì sau 6h đầu bể. Nếu mở 2 vòi trong 1h và khóa lại và mở vòi 2 chảy trong 1h  thì được 1/3 bể . hỏi mỗi vòi chảy riêng thì sau bao lâu thì đầy bể?

NT
6 tháng 11 2023 lúc 21:39

Gọi thời gian vòi 1 chảy riêng đầy bể là x(giờ)

thời gian vòi 2 chảy riêng đầy bể là y(giờ)

(Điều kiện: x>0;y>0)

Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{x}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{y}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{6}\left(bể\right)\)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Trong 2 giờ, vòi 2 chảy được: \(\dfrac{2}{y}\left(bể\right)\)

Vì khi mở vòi 1 chảy 1 giờ và vòi 2 chảy 1+1=2 giờ thì ta được 1/3 bể nên ta có phương trình:

\(\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\)(2)

Từ (1) và (2) ta sẽ có hệ phương trình sau:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{2}{y}=\dfrac{1}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{1}{y}=-\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=6\end{matrix}\right.\)

Vậy: Vòi 1 cần 6 giờ để chảy riêng đầy bể

Vòi 2 cũng cần 6 giờ để chảy riêng đầy bể

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
S3
Xem chi tiết
H24
Xem chi tiết
TP
Xem chi tiết
HQ
Xem chi tiết