a: Mệnh đề này đúng
b: Mệnh đề này sai
a: Mệnh đề này đúng
b: Mệnh đề này sai
Cho 2 tập hợp A = {x € R/(2x - x2)(2x2 - 3x -2) = 0}, B = {n € N/3<n2<30}, chọn mệnh đề đúng?
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\forall x\in R\), \(x^2-x+1>0\)
b) \(\exists n\in N\), (n +2) (n+1 ) = 0
c) \(\exists x\in Q\), \(x^2=3\)
d) \(\forall n\in N\), \(2^n\ge n+2\)
Cho mệnh đề A: "∀x ∈ R: x ≥ 2 ⇒ x2 ≥ 4". Mệnh đề phủ định của mệnh đề A: "∀x ∈ R: x ≥ 2 ⇒ x2 ≥ 4" là:
Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích? Phát biểu các mệnh đề đó thành lời
a) \(\exists x\in R\), 5x - \(3x^2\) \(\le1\)
b) \(\exists x\in R\), \(x^2+2x+5\) là hợp số
c) \(\forall n\in N\), \(n^2+1\) không chia hết cho 3
d) \(\forall n\in N^{sao}\), n ( n + 1 ) là số lẻ
e) \(\forall n\in N^{sao}\), n ( n + 1) ( n + 2 ) chia hết cho 6
Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\exists x\in Q\), \(4x^2-1=0\)
b) \(\exists n\in N\), \(n^2+1\) chia hết cho 4
c) \(\exists x\in R\), \(\left(x-1\right)^2\ne x-1\)
d) \(\forall n\in N\), \(n^2>n\)
e) \(\exists n\in N\), n(n+!) là một số chính phương
Mệnh đề P ( x ) : " ∀ x ∈ R , x 2 − x + 7 < 0 " . Phủ định của mệnh đề P là:
A. ∃ x ∈ R , x 2 − x + 7 > 0
B. ∀ x ∈ R , x 2 − x + 7 > 0
C. ∀ x ∉ R , x 2 − x + 7 ≥ 0
D. ∃ x ∈ R , x 2 − x + 7 ≥ 0
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
Phát biểu thành lời các mệnh đề sau và xét tính đúng sai của chúng. ∃ x ∈ R : x 2 + x + 1 > 0
Cho X = {n ∈ N*|n là bội số của 6 và 4}, Y = {n ∈ N*| n là bội số của 12} các mệnh đề sau mệnh đề nào sai:
A. X ⊂ Y.
B. Y ⊂ X.
C. X = Y.
D. ∃n: n ∈ X và n ∉ Y.