Miền nghiệm của hệ bất phương trình \(\left\{{}\begin{matrix}x+y\le10\\-3\le x\le3\\-3\le y\le3\end{matrix}\right.\) là:
A. Một nửa mặt phẳng
B. Miền tam giác
C. Miền tứ giác
D. Miền ngũ giác
1. Tìm tất cả các đa thức \(P\left(x\right)\) khác đa thức 0 thỏa mãn \(P\left(2014\right)=2046\) và \(P\left(x\right)=\sqrt{P\left(x^2+1\right)-33}+32,\forall x\ge0\)
2. Tìm tất cả các đa thức \(P\left(x\right)\inℤ\left[x\right]\) bậc \(n\) thỏa mãn điều kiện sau: \(\left[P\left(2x\right)\right]^2=16P\left(x^2\right),\forall x\inℝ\)
\(y=-x^2+4x+5\)
tìm m để
\(f\left(\left|x\right|\right)-\left(m+1\right)\left|f\left(\left|x\right|\right)\right|+m=0\) có 8 nghiệm pb
Tìm GTNN :
\(A=|x+2|+\left|x+5\right|\)
\(B=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
Tìm tất cả các hàm số \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn:
\(f\left(x+yf\left(x\right)\right)=f\left(x\right)+xf\left(y\right),\forall x,y\inℝ^+\)
pt: \(\left(x^2-2x+5\right)\left(x+1\right)\left(x-3\right)=m\)
tìm m để pt có nghiệm \(\in\left[0;3\right]\)
1.tìm m để phương trình \(x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(x\ne0\right)\) có nghiệm
2. cho hàm số y=f(x)=\(x^2-4x+3\)
tìmcác giá trị nguyên của m để
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
Cho 3 số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\). Tìm GTLN của biểu thức \(P=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
1. Có bao nhiêu \(m\in Z\) \(\in\left[-30;40\right]\) để bpt sau đúng \(\forall x\in R\)
\(a.\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+5\right)\ge m\)
b.\(b.\left(x^2-2x+4\right)\left(x^2+3x+4\right)\ge mx^2\)
2. Tìm m để pt
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm \(x\ge1\)
Tìm các hàm
\(f:\left(0;1\right)\rightarrow R:f\left(xyz\right)=xf\left(x\right)+\text{yf}\left(y\right)+zf\left(x\right)\forall x,y,z\in\left(0;1\right)\)