\(\left(\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{\sqrt{a}}{a-1}\right):\left(\frac{2}{a}-\frac{2-a}{a\sqrt{a}+a}\right)\)
=\(\frac{\sqrt{a}\left(\sqrt{a}+1\right)+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}:\frac{2\left(\sqrt{a}+1\right)-2+a}{a\left(\sqrt{a}+1\right)}\)
= \(\frac{\sqrt{a}\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{a\left(\sqrt{a+1}\right)}{\sqrt{a}\left(2+\sqrt{a}\right)}\)
=\(\frac{a}{\sqrt{a}-1}\)