H24

\(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)

tìm m để hệ có nghiệm (x;y):

a. \(y^2+3x-1\) đạt Min

b. \(x^2-y^2\) đạt Max

NT
31 tháng 1 2024 lúc 22:02

Vì \(\dfrac{1}{2}\ne\dfrac{-2}{3}\)

nên hệ luôn có nghiệm duy nhất

a: \(\left\{{}\begin{matrix}x-2y=-3m-4\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y=-6m-8\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-4y-2x-3y=-6m-8-8m+1\\2x+3y=8m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-7y=-14m-7\\2x=8m-1-3y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2m+1\\2x=8m-1-6m-3=2m-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=2m+1\\x=m-2\end{matrix}\right.\)

Đặt \(A=y^2+3x-1\)

\(=\left(2m+1\right)^2+3\left(m-2\right)-1\)

\(=4m^2+4m+1+3m-6-1\)

\(=4m^2+7m-6\)

\(=4\left(m^2+\dfrac{7}{4}m-\dfrac{3}{2}\right)\)

\(=4\left(m^2+2\cdot m\cdot\dfrac{7}{8}+\dfrac{49}{64}-\dfrac{145}{64}\right)\)

\(=4\left(m+\dfrac{7}{8}\right)^2-\dfrac{145}{16}>=-\dfrac{145}{16}\)
Dấu '=' xảy ra khi m=-7/8

b: Đặt B=x^2-y^2

\(=\left(m-2\right)^2-\left(2m+1\right)^2\)

\(=m^2-4m+4-4m^2-4m-1\)

\(=-3m^2-8m+3\)

\(=-3\left(m^2+\dfrac{8}{3}m-1\right)\)

\(=-3\left(m^2+2\cdot m\cdot\dfrac{4}{3}+\dfrac{16}{9}-\dfrac{25}{9}\right)\)

\(=-3\left(m+\dfrac{4}{3}\right)^2+\dfrac{25}{3}< =\dfrac{25}{3}\)

Dấu '=' xảy ra khi m=-4/3

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VL
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết