HN

làm phần a bài 8 hộ mình với ạ undefined

NT
2 tháng 9 2021 lúc 19:09

Bài 8:

a: Ta có: \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right)\cdot\dfrac{x^4-2x^2+1}{2}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{2}\)

\(=\dfrac{x^2-x-2-x^2-x-2}{1}\cdot\dfrac{x-1}{2}\)

\(=\dfrac{-2x\cdot\left(x-1\right)}{2}=-x\left(x-1\right)\)

Bình luận (0)
LL
2 tháng 9 2021 lúc 19:10

Bài 8:

a) \(A=\left(\dfrac{x-2}{x^2-1}-\dfrac{x+2}{x^2+2x+1}\right).\dfrac{x^4-2x^2+1}{2}\left(đk:x\ne1,x\ne-1\right)\) 

\(=\dfrac{\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x^2-1\right)^2}{2}=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}.\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{2}=\dfrac{-2x\left(x-1\right)}{2}=-x^2+x\)

b) \(x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=2\)(do đkxđ của A là \(x\ne1\))

\(A=-x^2+x=-2^2+2=-2\)

c) Do \(A=-x^2+x\in Z\forall x\in Z\)

\(\Rightarrow A\in Z\Leftrightarrow x\in Z\)

 

Bình luận (1)

Các câu hỏi tương tự
NL
Xem chi tiết
H24
Xem chi tiết
LA
Xem chi tiết
NV
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
AV
Xem chi tiết
KL
Xem chi tiết
TC
Xem chi tiết