\(a,\dfrac{5}{18x^3y}=\dfrac{15y}{54x^3y^2};\dfrac{2}{27x^2y^2}=\dfrac{4x}{54x^3y^2}\\ b,\dfrac{11}{16x^3y^4}=\dfrac{33y}{48x^3y^5};\dfrac{5}{12x^2y^5}=\dfrac{20x}{48x^3y^5}\\ c,\dfrac{5}{3x-12}=\dfrac{10x}{6x\left(x-4\right)};\dfrac{3}{2x^2-8x}=\dfrac{9}{6x\left(x-4\right)}\\ d,\dfrac{2x}{5x^2-5x}=\dfrac{2}{5\left(x-1\right)}=\dfrac{2\left(x+1\right)}{5\left(x-1\right)\left(x+1\right)}\\ \dfrac{x+3}{x^2-1}=\dfrac{5\left(x+3\right)}{5\left(x-1\right)\left(x+1\right)}\\ e,\dfrac{3x+1}{x^2-4}=\dfrac{5\left(3x+1\right)}{5\left(x-2\right)\left(x+2\right)};\dfrac{3}{5x+10}=\dfrac{3\left(x-2\right)}{5\left(x+2\right)\left(x-2\right)}\)