\(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x+2\right)=4\)
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-4}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x+2\right)\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x+2\right)=4\)
Kết quả giới hạn \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x+3}-2}{x-1}\) bằng:
A. 0
B. \(\dfrac{1}{2}\)
C. \(\dfrac{1}{4}\)
D. \(\dfrac{1}{3}\)
Kết quả giới hạn \(\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\) bằng:
A. 2
B. 1
C. \(+\infty\)
D. -1
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow2}\dfrac{1-\sqrt{x^2+3}}{-x^2+3x-2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{4x-1}+3}{x^2-4}\)
Tìm giới hạn:
a, \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x^2+5}-3}{x+2}\)
b, \(\lim\limits_{x\rightarrow2}\dfrac{x^2+x-6}{x^2-4}\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-3x+2}{x-2}\)
Tính giới hạn
a) \(\lim\limits_{x\rightarrow2}\dfrac{x+3}{x^2+x+4}=\dfrac{1}{2}\)
b) \(\lim\limits_{x\rightarrow-3}\dfrac{x^2+5x+6}{x^2+3x}=\dfrac{1}{3}\)
Tính các giới hạn
a) \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-\sqrt[3]{x-1}}{x}\)
b) \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x-3}+\sqrt[4]{2x-3}}{x-2}\)
Tìm giới hạn sau :
\(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{3x-2}}{x^2-4}\)