Lời giải:
Đặt \(u=x^2+3x-5; dv=(2x-3)^{10}dx\)
\(\Rightarrow du=(2x+3)dx; v=\int (2x-3)^{10}dx=\frac{1}{2}\int (2x-3)^{10}d(2x-3)=\frac{1}{22}(2x-3)^{11}\)
Do đó:
\(\int (x^2+3x-5)(2x-3)^{10}dx=\frac{1}{22}.(x^2+3x-5)(2x-3)^{11}-\frac{1}{22}\int (2x-3)^{11}(2x+3)dx\)
\(=\frac{1}{22}.(x^2+3x-5)(2x-3)^{11}-\frac{1}{22}[\int (2x-3)^{12}dx+6\int (2x-3)^{11}dx]\)
\(=\frac{1}{22}.(x^2+3x-5)(2x-3)^{11}-\frac{1}{22}[\frac{1}{2}\int (2x-3)^{12}d(2x-3)+3\int (2x-3)^{11}d(2x-3)]\)
\(=\frac{1}{22}(x^2+3x-5)(2x-3)^{11}-\frac{1}{44}.\frac{1}{13}(2x-3)^{13}-\frac{3}{22}.\frac{1}{12}(2x-3)^{12}+C\)