NK

I=\(\dfrac{1}{1x3}\)+\(\dfrac{1}{3x5}\)+\(\dfrac{1}{5x7}\)+....\(\dfrac{1}{197x199}\)+\(\dfrac{1}{199x201}\)

NT
6 tháng 10 2021 lúc 22:27

\(I=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{199\cdot201}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{199\cdot201}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{199}-\dfrac{1}{201}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{200}{201}=\dfrac{100}{201}\)

Bình luận (0)
AH
6 tháng 10 2021 lúc 22:54

Lời giải:

\(2\times I=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{199\times 201}\)

\(=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+....+\frac{201-199}{199\times 201}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(=1-\frac{1}{201}=\frac{200}{201}\)

\(I=\frac{200}{201}:2=\frac{100}{201}\)

Bình luận (0)
NL
7 tháng 10 2021 lúc 9:37

100/201

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
PB
Xem chi tiết
LH
Xem chi tiết
Xem chi tiết
NH
Xem chi tiết
DV
Xem chi tiết
QT
Xem chi tiết
PT
Xem chi tiết
NK
Xem chi tiết