Kẻ CH vuông góc AB, AK vuông góc DC
AK\(\perp\)DC
DC//AB
Do đó: AK\(\perp\)AB
mà CH\(\perp\)AB
nên AK//CH
Xét tứ giác AHCK có
AK//CH
AH//CK
Do đó: AHCK là hình bình hành
=>AK=CH
\(S_{ADC}=\dfrac{1}{2}\cdot AK\cdot DC\)
\(S_{ABC}=\dfrac{1}{2}\cdot CH\cdot AB\)
=>\(\dfrac{S_{ADC}}{S_{ABC}}=\dfrac{\dfrac{1}{2}\cdot AK\cdot DC}{\dfrac{1}{2}\cdot CH\cdot AB}=\dfrac{AK\cdot DC}{CH\cdot AB}\)
\(=\dfrac{AK\cdot DC}{AK\cdot AB}=\dfrac{DC}{AB}=2\)
=>\(S_{ADC}=2\cdot S_{ABC}=35\left(cm^2\right)\)
\(S_{ABCD}=S_{ABC}+S_{ADC}=35+17.5=52.5\left(cm^2\right)\)