H24

Hình chóp S.ABCD đáy là 1 tứ giác lồi ( AD không song song BC). Gọi M là trung điểm SA. a) Xác định giao tuyến của 2 mp (SAD) và (SBC) b) Gọi G là trọng tâm ∆SCD. Tìm giao điểm K của MG với (SBD)

NT
5 tháng 11 2023 lúc 5:27

a: Trong mp(ABCD), gọi N là giao điểm của AD và BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

=>\(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

b: Gọi H là giao điểm của SG với CD

Xét ΔSCD có

G là trọng tâm

H là giao điểm của SG với DC

Do đó: H là trung điểm của DC

Chọn mp(SAH) có chứa MG

Trong mp(ABCD), gọi E là giao điểm của AH với BD

\(E\in AH\subset\left(SAH\right)\)

\(E\in BD\subset\left(SBD\right)\)

Do đó: \(E\in\left(SAH\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAH\right)\cap\left(SBD\right)\)

nên \(\left(SAH\right)\cap\left(SBD\right)=SE\)

Gọi K là giao điểm của MG với SE

=>K là giao điểm của MG với (SBD)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
V2
Xem chi tiết