NQ

help ạ

loading...

NT
22 tháng 11 2023 lúc 22:16

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x+6}-\sqrt{x+2}}{x^2-4}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\sqrt[3]{x+6}-2+2-\sqrt{x+2}}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{x+6-8}{\sqrt[3]{\left(x+6\right)^2}+2\cdot\sqrt[3]{x+6}+4}+\dfrac{4-x-2}{2+\sqrt{x+2}}}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\sqrt[3]{x+6}+4}-\dfrac{1}{2+\sqrt{x+2}}\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+6\right)^2}+2\cdot\sqrt[3]{x+6}+4}-\dfrac{1}{2+\sqrt{x+2}}}{x+2}\)

\(=\dfrac{\dfrac{1}{\sqrt[3]{\left(2+6\right)^2}+2\cdot\sqrt[3]{2+6}+4}-\dfrac{1}{2+\sqrt{2+2}}}{2+2}\)

\(=\dfrac{\dfrac{1}{\sqrt[3]{64}+2\cdot\sqrt[3]{8}+4}-\dfrac{1}{2+2}}{4}\)

\(=\dfrac{\dfrac{1}{4+2\cdot2+4}-\dfrac{1}{4}}{4}=\left(\dfrac{1}{16}-\dfrac{1}{4}\right):4=\left(\dfrac{1}{16}-\dfrac{4}{16}\right)\cdot\dfrac{1}{4}=\dfrac{-3}{64}\)

Bình luận (0)

Các câu hỏi tương tự
H24
NQ
KT
VT
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết