Lời giải:
Trong các hàm kể trên có hàm số ở phương án A không xác định tại $x=-1$ nên hàm số đó gián đoạn tại điểm $x_0=-1$
Đáp án A.
Lời giải:
Trong các hàm kể trên có hàm số ở phương án A không xác định tại $x=-1$ nên hàm số đó gián đoạn tại điểm $x_0=-1$
Đáp án A.
1/ Xét tính liên tục của hàm số tại một điểm:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-4}{x^2+x-2},x\ne2\\2x+1,x=2\end{matrix}\right.\left(x_0=2\right)}\)
cho f(x) = \(\dfrac{2\sqrt{x+1}-x-2}{x^2}\) (x≠0) và 2-9m (x=0) . tìm m để hàm số liên tục tại \(x_0\)=0
Câu 1, Tìm tất cả số thực a sao cho hàm
a, f(x)=\(\left|x-1\right|\left(x-a\right)^2\) . Khả vi tại x=1
b,f(x)=\(\left|x+1\right|\cos\left(x+a\right)\) . Khả vi tại x=-1
Câu 2 , Viết khai triển Maclaurin của hàm
a,f(x)=(1+x)ln(1+2x) đến \(x^5\) . Tính \(f^{\left(5\right)}\left(0\right)\)
b,f(x)=(1+x)cos(x) đến \(x^5\) . Tính \(f^{\left(5\right)}\left(0\right)\)
1/ Xét tính liên tục của hàm số tại một điểm:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-4}{x^2+x-2};x\ne2\\2x+1;x=2\end{matrix}\right.\) tại \(x_0=2\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\left(x+3\right)^3-27;x>0\\x^3+27;x\le0\end{matrix}\right.\) tại \(x_0=0\)
c) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-6x^2-x+6}{x-1};x>1\\3x+5;x\le1\end{matrix}\right.\) tại \(x_0=1\)
d) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{3x+10}-x-4}{x+2};x\ne-2\\-\dfrac{1}{4};x=-2\end{matrix}\right.\) tại \(x_0=-2\)
2/ Tìm \(m\) để hàm số sau liên tục tại điểm đã chỉ ra:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{\sqrt{x+3}-2};x\ne1\\mx+2;x=1\end{matrix}\right.\) tại \(x_0=1\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt[3]{2x^2=9}-3}{2x-6};x\ne3\\m;x=3\end{matrix}\right.\) tại \(x_0=3\)
\(f(x) = \begin{cases} \dfrac{x^2-6x+8}{\sqrt{3x+2}-2} \ khi \ x < 2 \\ \dfrac{x+8}{x-1} \ khi \ x \geq 2 \\\end{cases}
tại x_0 =2.\) Xét tính liên tục của hàm số:
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}3x+2;\left(x< -1\right)\\x^2-1;\left(x\ge-1\right)\end{matrix}\right.\)
a) Vẽ đồ thị hàm số \(y=f\left(x\right)\). Từ đó nêu nhận xét về tính liên tục của hàm số trên tập xác định của nó ?
b) Khẳng định nhận xét trên bằng một chứng minh ?
cho f(x)=\(\left\{{}\begin{matrix}2-ax\left(x\le-1\right)\\x^2-bx+2\left(-1< x< 1\right)\\4x+a\left(x\ge1\right)\end{matrix}\right.\) tìm a,b để hàm số liên tục trên R
help pls
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}\forall x>1\\\sqrt{2};.....x=1\\\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}};....\left|x\right|< 1\end{matrix}\right.\)
Xét tính liên tục của hàm số tại x0=1