HL

Hai vòi nước cùng chảy vào một bể cạn sau 15h bể đầy. Nếu vòi I chảy trong 3h và vòi II chảy trong 5h thì được 1/4bể. Hỏi mỗi vòi chảy riêng trong bao lâu thì bể đầy.

NT
12 tháng 12 2023 lúc 23:17

Gọi thời gian chảy riêng đầy bể của vòi 1 và vòi 2 lần lượt là a(giờ) và b(giờ)

(Điều kiện: a>0 và b>0)

Trong 1 giờ, vòi 1 chảy được \(\dfrac{1}{a}\left(bể\right)\)

Trong 1 giờ, vòi 2 chảy được \(\dfrac{1}{b}\left(bể\right)\)

Trong 1 giờ, hai vòi chảy được \(\dfrac{1}{15}\left(bể\right)\)

Do đó, ta có: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\left(1\right)\)

Trong 3 giờ, vòi 1 chảy được \(\dfrac{3}{a}\left(bể\right)\)

Trong 5 giờ, vòi 2 chảy được \(\dfrac{5}{b}\left(bể\right)\)

Nếu vòi 1 chảy trong 3 giờ và vòi 2 chảy trong 5 giờ thì được 1/4 bể nên ta có: \(\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\\\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{a}+\dfrac{3}{b}=\dfrac{1}{5}\\\dfrac{3}{a}+\dfrac{5}{b}=\dfrac{1}{4}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-\dfrac{2}{b}=\dfrac{1}{5}-\dfrac{1}{4}=\dfrac{-1}{20}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{15}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=40\\\dfrac{1}{a}=\dfrac{1}{15}-\dfrac{1}{b}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=24\\b=40\end{matrix}\right.\left(nhận\right)\)

Vậy: Vòi 1 cần chảy trong 24 giờ để đầy bể

Vòi 2 cần chảy trong 40 giờ để đầy bể

Bình luận (0)

Các câu hỏi tương tự
S3
Xem chi tiết
VD
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
DY
Xem chi tiết
HT
Xem chi tiết
TP
Xem chi tiết
PN
Xem chi tiết
DT
Xem chi tiết