Bài 5: Giải bài toán bằng cách lập hệ phương trình

SN
Hai người làm chung một công việc thì sau 20 ngày sẽ hoàn thành. Nhưng sau khi làm chung được 10 ngày thì người thứ nhất đi làm việc khác, người thứ hai vẫn tiếp tục công việc đó và hoàn thành trong 15 ngày. Hỏi nếu làm riêng thì mỗi người phải làm trong bao nhiêu ngày để hoàn thành công việc?
NT
21 tháng 2 2021 lúc 14:16

Gọi x(ngày) và y(ngày) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>20; y>20)

Trong 1 ngày, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 ngày, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 ngày, hai người làm được: \(\dfrac{1}{20}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)(1)

Vì khi làm chung được 10 ngày thì người thứ nhất đi làm việc khác, người thứ hai vẫn tiếp tục công việc và hoàn thành trong 15 ngày nên ta có phương trình:

\(\dfrac{10}{x}+\dfrac{25}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{x}+\dfrac{10}{y}=\dfrac{1}{2}\\\dfrac{10}{x}+\dfrac{25}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-15}{y}=\dfrac{-1}{2}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=30\\\dfrac{1}{x}=\dfrac{1}{20}-\dfrac{1}{30}=\dfrac{1}{60}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=30\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 60 ngày để hoàn thành công việc khi làm một mình

Người thứ hai cần 30 ngày để hoàn thành công việc khi làm một mình

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
PA
Xem chi tiết
MG
Xem chi tiết
TD
Xem chi tiết
NB
Xem chi tiết
XC
Xem chi tiết
VL
Xem chi tiết
HH
Xem chi tiết
CT
Xem chi tiết