Bài 5: Giải bài toán bằng cách lập hệ phương trình

PA

Hai người cùng làm chung một công việc trong 20 ngày thì xong . Nếu người thứ nhất làm 12 ngày và người thứ hai làm 15 ngày thì chỉ được 2/3 công việc đó . Hỏi nếu mỗi đội làm riêng thì xong công việc đó trong bao lâu 

H24
26 tháng 12 2021 lúc 13:20

Gọi x là thời gian người thứ nhất hoàn thành x (ngày) 
Gọi y là thời gian  người thứ  hai hoàn thành y (ngày ) 
điều kiện ( x,y >o)
Trong 1  ngàyngười thứ 1   làm được \(\dfrac{1}{x}\)công việc
Trong 1  ngày  người thứ 2  làm được \(\dfrac{1}{y}\)công việc 
Vì 2 người cùng làm chung 1  công việc thì 20 ngày thì xong nên ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)

Nếu người thứ nhất làm 12 ngày  và  người thứ  hai làm trong 15 ngày  chỉ được công việc 

=))\(\dfrac{12}{x}\)+\(\dfrac{15}{y}\)=\(\dfrac{2}{3}\)(2)
Từ (1) và (2)  Ta có hpt :

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{12}{x}+\dfrac{15}{y}=\dfrac{2}{3}\end{matrix}\right.\) Đặt  \(\dfrac{1}{x}\)là u; \(\dfrac{1}{y}\)là v 
Ta có 
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{20}\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)\left\{{}\begin{matrix}12u+12v=\dfrac{3}{5}\left(x12\right)\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)-3v=-\dfrac{1}{15}\left(=\right)v=\dfrac{1}{45 }\)

Thay v=\(\dfrac{1}{45}\) vào pt \(12u+15v=\dfrac{2}{3}\left(=\right)12u+15\left(\dfrac{1}{45}\right)=\dfrac{2}{3}.....\left(=\right)12u+\dfrac{1}{3}=\dfrac{2}{3}\left(=\right)12u=\dfrac{2}{3}-\dfrac{1}{3}\left(=\right)12u=\dfrac{1}{3}\left(=\right)u=\dfrac{1}{36}\)
\(\dfrac{1}{x}=\dfrac{1}{36}->x=36;\dfrac{1}{y}=\dfrac{1}{45}->y=45\)
Vậy Khi làm riêng đội 1  hoàn thành    trong 36 ngày , đội thứ 2 hoàn thành trong 45 ngày

 

 

Bình luận (0)

Các câu hỏi tương tự
MV
Xem chi tiết
NB
Xem chi tiết
SK
Xem chi tiết
SN
Xem chi tiết
VL
Xem chi tiết
MG
Xem chi tiết
TH
Xem chi tiết
CT
Xem chi tiết
VL
Xem chi tiết