Ôn tập phương trình bậc hai một ẩn

HN

Hai công nhân cùng làm một công việc trong 16 giờ thì xong .Nếu người thứ nhất làm trong 3 giờ ,người thứ hai làm trong 6 giờ thì học làm đc \(\dfrac{1}{4}\)công việc.Hỏi mỗi công nhân làm một mình thì trong bao lâu làm xong công việc

NT
23 tháng 3 2021 lúc 21:54

Gọi x(giờ) và y(giờ) lần lượt là thời gian người thứ nhất và người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>0; y>0)

Trong 1 giờ, người thứ nhất làm được:

\(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, người thứ hai làm được:

\(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai người làm được: 

\(\dfrac{1}{16}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\)(1)

Vì nếu người thứ nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm được 1/4 công việc nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{16}\\\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-3}{y}=\dfrac{-1}{16}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=48\\\dfrac{1}{x}+\dfrac{1}{48}=\dfrac{1}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\y=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=48\end{matrix}\right.\)(thỏa ĐK)

Vậy: Người thứ nhất cần 24 giờ để hoàn thành công việc khi làm một mình

Người thứ hai cần 48 giờ để hoàn thành công việc khi làm một mình

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TL
Xem chi tiết
HN
Xem chi tiết
BC
Xem chi tiết
SK
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
NQ
Xem chi tiết