Cho phương trình \(7x^2+2\left(m-1\right)x-m^2=0.\)
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-et, hãy tính tổng các bình phương hai nghiệm của phương trình đã cho theo m.
Cho phương trình \(7x^2+2\left(m-1\right)x-m^2=0.\)
a) Với giá trị nào của m thì phương trình có nghiệm?
b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-et, hãy tính tổng các bình phương hai nghiệm của phương trình đã cho theo m.
Sau hai năm, số dân của một thành phố tăng từ 2 000 000 người lên 2 020 050 người. Hỏi trung bình mỗi năm dân số thành phố đó tăng bao nhiêu phần trăm?
Gọi tỉ số tăng dân số trung bình mỗi năm là x% (x > 0).
Sau một năm dân số của thành phố là:
2 000 000 + 2 000 000 . \(\dfrac{x}{100}\) = 2 000 000 + 20 000x (người)
Sau hai năm, dân số của thành phố là:
2 000 000 + 20 000x + (2 000 000 + 20 000x). \(\dfrac{x}{100}\)
= 2 000 000 + 40 000x + 200x2 (người)
Ta có phương trình:
2 000 000 + 40 000x + 200x2 = 2 020 050 \(\Leftrightarrow\) 4 x2 + 800x – 401 = 0
\(\Delta\)’ = 4002 – 4(-401) = 160 000 + 1 604 = 161 604 > 0
\(\sqrt{\Delta}\)’ = \(\sqrt{ }\)161 604 = 402
Vậy phương trình có 2 nghiệm:
\(x_1=\dfrac{-400+402}{4}=0,5\left(TM\right)\)
và \(x_2=\dfrac{-400-402}{4}=-200,5< 0\)( loại )
Tỉ lệ tăng dẫn số trung bình hàng năm của thành phố là 0,5%
Trả lời bởi Lưu Hạ Vy
Giải các phương trình:
a) 1,2x3 - x2 - 0,2x = 0; b) 5x3 - x2 - 5x + 1 = 0.
a, \(1,2x^3-x^2-0,2x=0\)
\(\Leftrightarrow12x^3-10x^2-2x=0\)
\(\Leftrightarrow6x^3-5x^2-x=0\)
\(\Leftrightarrow x\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6x^2-5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-\dfrac{1}{6}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{-\dfrac{1}{6};0;1\right\}\)
b, \(5x^3-x^2-5x+1=0\)
\(\Leftrightarrow x^2\left(5x-1\right)-\left(5x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\5x-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1;\dfrac{1}{5};1\right\}\)
Tìm hai số u và v trong mỗi trường hợp sau:
a) \(u+v=12;uv=28\) và u >v;
b) \(u+v=3;uv=6.\)
a) u + v = 12; uv = 28 và u > v
u và v là hai nghiệm của phương trình:
x2 – 12x + 28 = 0
\(\Delta\)’ = 36 – 28 = 8
\(\Rightarrow x_1=6+2\sqrt{2}\)
\(x_2=6-2\sqrt{2}\)
Vì \(6+2\sqrt{2}>6-2\sqrt{2}\)
\(\Rightarrow u=6+2\sqrt{2}\)
\(v=6-2\sqrt{2}\)
b) u + v = 3; uv = 6
u và v là hai nghiệm của phương trình:
x2 – 3x + 6 = 0
\(\Delta\) = (-3)2 – 4.1.6 = 9 – 24 = -15 < 0
Phương trình vô nghiêmh suy ra không có 2 số u và v thỏa mãn điều kiện đã cho.
Trả lời bởi Lưu Hạ Vy
Giải phương trình bằng cách đặt ẩn phụ:
a) \(2\left(x^2-2x\right)^2+3\left(x^2-2x\right)+1=0;\)
b) \(\left(x+\dfrac{1}{x}\right)^2-4\left(x+\dfrac{1}{x}\right)+3=0.\)
a, Đặt \(x^2-2x=t\)
Phương trình đã cho trở thành:
\(2t^2+3t+1=0\)
Có a-b+c = 2-3+1 = 0
=> Phương trình có 2 nghiệm: \(t_1=-1;t_2=-\dfrac{1}{2}\)
Với t= -1 ta có \(x^2-2x=-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
Với t= -1/2 ta có \(x^2-2x=-\dfrac{1}{2}\)
\(\Leftrightarrow2x^2-4x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2+\sqrt{2}}{2}\\x=\dfrac{2-\sqrt{2}}{2}\end{matrix}\right.\)
Vậy tập nghiệm của pt đã cho là \(S=\left\{1;\dfrac{2+\sqrt{2}}{2};\dfrac{2-\sqrt{2}}{2}\right\}\)
b, ĐK: x khác 0
Đặt \(x+\dfrac{1}{x}=t\)
Phương trình đã cho trở thành: \(t^2-4t+3=0\)
Có a+b+c=1-4+3=0
=> Phương trình có 2 nghiệm \(t_1=1;t_2=3\)
• Với t=1 ta có \(x+\dfrac{1}{x}=1\)
\(\Leftrightarrow x^2-x+1=0\)
Vì \(\Delta=1^2-4.1=-3< 0\) nên pt vô nghiệm
• Với t=3 ta có \(x+\dfrac{1}{x}=3\)
\(\Leftrightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\) (TMĐK)
Vậy tập nghiệm của pt đã cho là \(S=\left\{\dfrac{3+\sqrt{5}}{2};\dfrac{3-\sqrt{5}}{2}\right\}\)
Giải các phương trình:
a) \(5x^2-3x+1=2x+11;\) b) \(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6};\)
c) \(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x};\) d) \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1};\)
e) \(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right);\) f) \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right).\)
a,5x2-3x+1=2x+11
\(\Leftrightarrow5x^2-3x+1-2x-11=0\)
\(\Leftrightarrow5x^2-5x-10=0\)
có a-b+c=5+5-10=0
=>\(\left\{{}\begin{matrix}x_1=-1\\x_2=2\end{matrix}\right.\)
vậy PT đã cho có 2 nghiệm là x1=-1;x2=2
b/\(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6}\)
=>6x2-20x-5x-25=0
<=>6x2-25x-25=0
<=>(x-5)(6x+5)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\x=\dfrac{-5}{6}\end{matrix}\right.\)
vậy PT đã cho có 2 nghiệm x1=5; x2=\(\dfrac{-5}{6}\)
c.\(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x}\)
=>x2+2x-10=0
\(\Delta^'=1+10=11\)
vì \(\Delta^'>0\) nên PT có 2 nghiệm phân biệt
x1=-1-\(\sqrt{11}\)
x2=-1+\(\sqrt{11}\)
d, \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1}\) ĐK x\(\ne\pm\dfrac{1}{3}\)
=>2(x+0,5)(3x-1) =2(7x+2)
=>6x2-13x-5=0
\(\Delta=169+120=289\Rightarrow\sqrt{\Delta}=17\)
vì \(\Delta\)> 0 nên PT có 2 nghiệm phân biệt
x1=\(\dfrac{13-17}{6}=\dfrac{-1}{3}\) (loại)
x2=\(\dfrac{13+17}{6}=\dfrac{5}{2}\) (thỏa mãn)
e,\(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{3}x^2-\left(\sqrt{3}-1\right)x+1-\sqrt{3}=0\)
\(\Delta=\left(\sqrt{3}-1\right)^2-8\sqrt{3}\left(1-\sqrt{3}\right)\)
=\(4-2\sqrt{3}-8\sqrt{3}+24\)
=25-2.5\(\sqrt{3}\)+3 =(5-\(\sqrt{3}\))2
vì \(\Delta\) >0 nên PT có 2 nghiệm phân biệt
x1=\(\dfrac{\sqrt{3}-1+5-\sqrt{3}}{4\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
x2=\(\dfrac{\sqrt{3}-1-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\)
f/ x2+2\(\sqrt{2}\)x+4=3(x+\(\sqrt{2}\))
\(\Leftrightarrow x^2+\left(2\sqrt{2}-3\right)x+4-3\sqrt{2}=0\)
\(\Delta=8-12\sqrt{2}+9-16+12\sqrt{2}=1\)
vì \(\Delta\)>0 nên PT đã cho có 2 nghiệm phân biệt
x1=\(\dfrac{3-2\sqrt{2}+1}{2}=2-\sqrt{2}\)
x2=\(\dfrac{3-2\sqrt{2}-1}{2}=1-\sqrt{2}\)
Trả lời bởi anh thu
Cho phương trình x2 - x - 2 = 0.
a) Giải phương trình.
b) Vẽ hai đồ thị y = x2 và y = x + 2 trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
Điều này chứng tỏ rằng đồ thị đường thẳng cắt đồ thị parapol tại hai điểm có hoành độ lần lượt là x = -1; x= 2. Hai giá trị này cũng chính là nghiệm của phương trình x2 - x - 2 = 0 ở câu a).
Trả lời bởi Hai BinhVẽ đồ thị của hai hàm số \(y=\dfrac{1}{4}x^2\) và \(y=-\dfrac{1}{4}x^2\) trên cùng một hệ trục tọa độ.
a) Qua điểm B(0;4) kẻ đường thẳng song song với trục Ox. Nó cắt đồ thị của hàm số \(y=\dfrac{1}{4}x^2\) tại hai điểm M và M'. Tìm hoành độ của M và M'.
b) Tìm trên đồ thị của hàm số \(y=-\dfrac{1}{4}x^2\) điểm N có cùng hoành độ với M, điểm N' có cùng hoành độ với M, điểm N' có cùng hoành độ với M'. Đường thẳng NN' có song song với Ox không? Vì sao? Tìm tung độ của N và N' bằng hai cách:
- Ước lượng trên hình vẽ.
- Tính toán theo công thức.
- Bảng giá trị:
- Vẽ đồ thị:
a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.
Trả lời bởi Hai BinhGiải các phương trình:
a) 3x4 - 12x2 + 9 = 0; b) 2x4 + 3x2 - 2 = 0; c) x4 + 5x2 + 1 = 0.
a). Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(3y^2-12y+9=0\)
\(\Leftrightarrow y^2-4y+3=0\)
Nhận xét : \(a+b+c=1+\left(-4\right)+3=0\)
\(\Rightarrow y_1=1\) (TM \(y\ge0\))
\(y_2=\dfrac{3}{1}=3\)
Với \(y=y_1=1\Rightarrow x^2=1\Leftrightarrow x_1=1;x_2=-1\)
Với \(y=y_2=3\Rightarrow x^2=3\Leftrightarrow x_3=\sqrt{3};x_4=-\sqrt{3}\)
Vậy \(x_1=1;x_2=-1;x_3=\sqrt{3};x_4=-\sqrt{3}\) là các giá trị cần tìm
b) . Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(2y^2+3y-2=0\)
\(\Delta_y=3^2-4\cdot2\cdot\left(-2\right)=9+16=25\) \(\left(\sqrt{\Delta}=5\right)\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow\)\(y_1=\dfrac{-3+5}{2\cdot2}=\dfrac{1}{2}\) (TM \(y\ge0\) )
\(y_2=\dfrac{-3-5}{2\cdot2}=-2\) (KTM \(y\ge0\) )
Với \(y=y_1=\dfrac{1}{2}\Rightarrow x^2=\dfrac{1}{2}\Leftrightarrow x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\)
Vậy \(x_1=\dfrac{1}{4};x_2=-\dfrac{1}{4}\) là các giá trị cần tìm
c) Đặt \(x^2=y\) \(\left(y\ge0\right)\) ta có ;
\(y^2+5y+1=0\)
\(\Delta_y=5^2-4\cdot1\cdot1=25-4=21\)
Vì \(\Delta>0\) nên pt có 2 nghiệm phân biệt
\(\Rightarrow y_1=\dfrac{-5+\sqrt{21}}{2\cdot1}=\dfrac{-5+\sqrt{21}}{2}\) (KTM \(y\ge0\))
\(y_2=\dfrac{-5-\sqrt{21}}{2\cdot1}=\dfrac{-5-\sqrt{21}}{2}\) (KTM \(y\ge0\))
Vậy pt đã cho vô nghiệm
Trả lời bởi Nguyễn Đắc ĐịnhVới mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
a) \(12x^2-8x+1=0;x_1=\dfrac{1}{2};\)
b) \(2x^2-7x-39=0;x_1=-3;\)
c) \(x^2+x-2+\sqrt{2}=0;x_1=-\sqrt{2};\)
d) \(x^2-2mx+m-1=0;x_1=2.\)
a) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{8}{12}=\dfrac{2}{3}\\x_1\cdot x_2=\dfrac{1}{12}\end{matrix}\right.\)
Thay \(x_1=\dfrac{1}{2}\) ta có : \(x_2=\dfrac{2}{3}-x_1=\dfrac{2}{3}-\dfrac{1}{2}=\dfrac{1}{6}\)
b) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{7}{2}\\x_1\cdot x_2=\dfrac{-39}{2}\end{matrix}\right.\)
Thay \(x_1=-3\) ta có : \(x_2=\dfrac{7}{2}-x_1=\dfrac{7}{2}-\left(-3\right)=\dfrac{13}{2}\)
c) Vì pt có nghiệm theo vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1\cdot x_2=-2+\sqrt{2}\end{matrix}\right.\)
Thay \(x_1=-\sqrt{2}\) ta có : \(x_2=-1-x_1=-1-\left(-\sqrt{2}\right)=\sqrt{2}-1\)
d) Thay \(x_1=2\) vào pt ta có
\(2^2-2m\cdot2+m-1=0\)
\(\Leftrightarrow4-4m+m-1=0\\ \Leftrightarrow3-3m=0\\ \Leftrightarrow-3m=-3\\ \Leftrightarrow m=1\)
Vì pt \(x^2-2mx+m-1=0\) có nghiệm theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=m-1\end{matrix}\right.\)
Thay \(x_1=2\) ta có :
\(x_2=2m-x_1=2\cdot1-2=0\)
Trả lời bởi Nguyễn Đắc Định
Xét phương trình 7x2 + 2(m – 1)x – m2 = 0 (1)
a) Phương trình có nghiệm khi ∆’ ≥ 0
Ta có: ∆’ = (m – 1)2 – 7(-m2) = (m – 1)2 + 7m2 ≥ 0 với mọi m
Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của m
b) Gọi x1, x2 là hai nghiệm của phương trình (1)
Ta có:
\(x^2_1+x^2_2=\left(x_1+x_2\right)^2-2x_1x_2\\ =\left[\dfrac{-2\left(m-1\right)^2}{7}\right]-2\dfrac{\left(-m\right)^2}{7}\\ =\dfrac{4m^2-8m+4}{49}+\dfrac{2m^2}{7}\\ =\dfrac{4m^2-8m+4+14m^2}{49}\\ =\dfrac{18m^2-8m+4}{49}\)
Vậy \(x^2_1+x^2_2=\dfrac{18m^2-8m+4}{49}\).
Trả lời bởi qwerty