LL

GTNN của biểu thức P=(x-1)(x-3)(x-4)(x-6)+5 là Pmin =?

NT
6 tháng 3 2016 lúc 8:32

5

Bình luận (0)
LL
6 tháng 3 2016 lúc 13:05

Sai cậu à, mình cũng nhập vào số 5, nhưng thật tiếc là sai

Bình luận (0)
H24
27 tháng 7 2017 lúc 12:11

\(P=\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+5\\ P=\left(x^2-7x+6\right)\left(x^2-7x+12\right)+5\)

\(đặt\:t=x^2-7x+9\) khi đó:

\(P=\left(t+3\right)\left(t-3\right)+5\\ P=t^2-9+5=t^2-4\\ vì\:t^2\ge0\Rightarrow P\ge-4\)

dấu "=" xảy ra khi và chỉ khi:

\(t=0\\ \Leftrightarrow x^2-7x+9=0\\ x^2-3.3,5x+\left(3,5\right)^2=3,25\\ \left(x-3,5\right)^2=3,25\\ \Rightarrow\left[{}\begin{matrix}x-3,5=-\sqrt{3,25}\\x-3,5=\sqrt{3,25}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,5-\sqrt{3,25}\\x=3,5+\sqrt{3,25}\end{matrix}\right.\)

vậy P min=-4 tại \(\left[{}\begin{matrix}x=3,5-\sqrt{3,25}\\x=3,5+\sqrt{3,25}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
CU
Xem chi tiết
VK
Xem chi tiết