\(\sqrt{\dfrac{x^2-2x+1}{x^2-6x+9}}=0\) ( x # 3 )
⇔ \(\sqrt{\dfrac{\left(x-1\right)^2}{\left(x-3\right)^2}}=0\)
⇔ \(x=1\left(TM\right)\)
Vậy ,...
\(\sqrt{\dfrac{x^2-2x+1}{x^2-6x+9}}=0\) ( x # 3 )
⇔ \(\sqrt{\dfrac{\left(x-1\right)^2}{\left(x-3\right)^2}}=0\)
⇔ \(x=1\left(TM\right)\)
Vậy ,...
Bài 1: \(P=\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
a.Rút gọn P
b, Tìm MaxQ = \(\dfrac{2}{P}+\sqrt{x}\)
Bài 2:
\(P=\left(1-\dfrac{1-3\sqrt{x}}{x-9}\right):\left(\dfrac{9-x}{x+\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\right)\)
a, Rút gọn P
b, Tìm x để P > 0
c, Max Q = P(x+1)
Bài 3:\(P=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
a, Rút gọn P
b, Tìm x để \(Q=\dfrac{2\sqrt{x}}{P}\) nhận giá trị nguyên
Bài 4: Rút gọn: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x+1}}\right)\)
Bài 1: Giải PT
a) \(\sqrt{x^2-1}-x^2+1=0\)
b) \(\sqrt{x^2-4}-x+2=0\)
c) \(\sqrt{x^4-8x^2+16}=2-x\)
d) \(\sqrt{9x^2+6x+1}\sqrt{11-6\sqrt{2}}\)
e) \(\sqrt{4^2-9}=2\sqrt{2x+3}\)
f) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Gpt \(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
GPT: \(2x^2+\left(14-2\sqrt{x^2+8x}\right)x+8x-14\sqrt{x^2+8x}+24=0\)
Giải PT:
a) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}.\)
b) \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4.\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0.\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6.\)
1)
a) gpt \(\sqrt{5-3x}+\sqrt{x+1}=\sqrt{3x^2-4x+4}\)
b) ghpt \(\left\{{}\begin{matrix}2xy+4x+3y+6=0\\4x^2+y^2+12x+4y+9=0\end{matrix}\right.\)
1) gpt \(x^2+3x\sqrt{\dfrac{x^2+1}{x}}=10x-1\)
2) ghpt \(\left\{{}\begin{matrix}x^2+y^2+2\left(x+y\right)=6\\xy\left(x+2\right)\left(y+2\right)=9\end{matrix}\right.\)
3) cho a,b,c dương thỏa abc=1
CMR \(\dfrac{2}{a^2\left(b+c\right)}+\dfrac{2}{b^2\left(c+a\right)}+\dfrac{2}{c^2\left(a+b\right)}\ge3\)
c) \(2+2\sqrt{3}-\sqrt{6+4\sqrt{2}}\)
d) \(\sqrt{4x^2-12x+9}-2x+1\) với x ≥ \(\dfrac{3}{2}\)
Giải giúp em với ạ :((