Chương III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

LH

Gọi (x;y) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x-my=2-4m\\mx+y=3m+1\end{matrix}\right.\) .

Tìm giá trị lớn nhất của biểu thức \(L=x^2+y^2-2x\) khi m thay đổi

NL
19 tháng 6 2020 lúc 7:18

\(\left\{{}\begin{matrix}x-my=2-4m\\m^2x+my=3m^2+m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-my=2-4m\\\left(m^2+1\right)x=3m^2-3m+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{3m^2-3m+2}{m^2+1}=3-\frac{3m+1}{m^2+1}\\y=\frac{4m^2+m+1}{m^2+1}=4-\frac{3-m}{m^2+1}\end{matrix}\right.\)

\(L=\left(3-\frac{3m+1}{m^2+1}\right)^2+\left(4-\frac{3-m}{m^2+1}\right)^2-6+\frac{6m+2}{m^2+1}\)

\(=19-\frac{4m+6}{m^2+1}\)

\(L_{max}\) khi \(k=\frac{4m+6}{m^2+1}\) đạt min

\(k=\frac{4m+6}{m^2+1}=km^2-4m+k-6=0\)

\(\Delta'=4-k\left(k-6\right)\ge0\)

\(\Leftrightarrow-k^2+6k+4\ge0\Rightarrow3-\sqrt{13}\le k\le3+\sqrt{13}\)

\(\Rightarrow L\le19-\left(3-\sqrt{13}\right)=16+\sqrt{13}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
RP
Xem chi tiết
RP
Xem chi tiết
DT
Xem chi tiết
DN
Xem chi tiết
KR
Xem chi tiết
DT
Xem chi tiết
TT
Xem chi tiết
NM
Xem chi tiết