Đáp án C
Ta dễ dàng chứng minh được I A → + I B → + I C → + I D → = 0 → nên k = 1.
Thật vậy ta có
Đáp án C
Ta dễ dàng chứng minh được I A → + I B → + I C → + I D → = 0 → nên k = 1.
Thật vậy ta có
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ M N → = k ( A D → + B C → ) ?
A. k = 3
B. k = 1 2
C. k = 2
D. k = 1 3
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ M N → = k ( A D → + B C → )
A. k = 3
B. k = 1 2
C. k = 2
D. k = 7 5
Cho hàm số y = x 3 - 3 x 2 + 4 có đồ thị (C). Gọi d là đường thẳng qua I(1; 2) với hệ số góc k. Tập tất cả các giá trị của k để d cắt (C) tại ba điểm phân biệt I, A, B sao cho I là trung điểm của đoạn thẳng AB là
A. {0}
B. R
C. {-3}
D. (-3; +∞).
Cho hàm số y=x3-3x2+4 có đồ thị (C) . Gọi d là đường thẳng qua I(1; 2) với hệ số góc k . Có bao nhiêu giá trị nguyên của k để d cắt (C) tại ba điểm phân biệt I, A, B sao cho I là trung điểm của đoạn thẳng AB là
A. 4
B. 1
C. 6
D. vô số
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AC và BC. Trên BD lấy điểm K sao cho BK= 2KD. Gọi E là giao điểm của JK và CD; F là giao điểm của IE và AD. Tìm giao điểm của AD và (IJK).
A. Điểm I
B. Điểm E
C. Điểm F
D. Điểm K
Cho tứ điện ABCD , gọi I, J, K lần lượt là trung điểm của AC, BC, BD Giao tuyến của hai mặt phẳng (ABD) và (IJK) là
A. Đường thẳng qua J song song với AC
B. Đường thẳng qua I song song với AD
C. Đường thẳng qua K song song với AB
D. Đường thẳng qua J song song với CD
Cho tứ diện đều ABCD cạnh a. Gọi K là trung điểm của AB, M, N lần lượt là hình chiều của K lên AD và AC. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp K.CDMN?
Cho tứ diện đều ABCD cạnh a. M là trung điểm cảu BC, K là điểm thuộc BD sao cho BK = 2KD. I là trung điểm của AC. Tính diện tích thiết diện tạo bởi mặt phẳng (IMK) và hình chóp
A. a 2 4 .
B. a 2 51 26 .
C. 5 a 2 51 144 .
D. 4 a 2 9 .
Cho tứ diện NMPQ. Gọi I, J, K lần lượt là trung điểm của các cạnh MN, MP, MQ. Tỉ số thể tích V M I J K V M N P Q bằng: