a: Xét ΔBDC có
M,E lần lượt là trung điểm của BC và BD
nên ME là đường trung bình
=>ME//CD
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
c: EM=2DI
EM=1/2DC
=>2DI=1/2DC
=>DI=1/4DC
=>CI=3DI
a: Xét ΔBDC có
M,E lần lượt là trung điểm của BC và BD
nên ME là đường trung bình
=>ME//CD
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
c: EM=2DI
EM=1/2DC
=>2DI=1/2DC
=>DI=1/4DC
=>CI=3DI
Gọi M là trung điểm của cạnh BC của tam giác ABC.Trên cạnh AB lấy điểm D và E sao cho AD = DE=ED.C/m rằng:
a) ME // CD
b) Đoạn thẳng CD cắt AM tại trung điểm I của nó.
c) C/m CI = 3DI
HELP ME!
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H. Chứng minh rằng:
a) Tam giác AMB = tam giác AMC và suy ra AM \(\perp\)BC
b) Tam giác AHD = tam giác AHE và DE // BC
c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K . Chứng minh CK // ME
Cho tam giác ABC có AB = AC và AB > BC. Gọi M là trung điểm của cạnh BC.
a. Chứng minh rằng tam giác ABM = tam giác ACM và AM vuông góc với BC
b. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. CHỨNG minh tam giác AMD = tam giác AME
c. Gọi N là trung điểm của đoạn thẳng BD. Trên tia đối của tia NM lấy điểm K sao cho NK = NM. Chứng minh ba điểm D, E ,K thẳng hàng
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD= AE a) chứng minh tam giác ABM= tam giác ACM
a) Chứng minh: tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc BC
c) Chứng minh tam giác ADM = tam giác AEM
d) Gọi H là trung điểm của cạnh EC. Từ C vẽ đường thẳng song song với cạnh ME, đường thẳng này cắt tia MH tại F. Chứng minh ba điểm D;E;F thẳng hang
Cho tam giác ABC. Lấy điểm D trên AB, lấy E trên AC sao cho AD = AE.a)Chứng minh: BE = CDb)Gọi I là giao điểm của BE và CD. Chứng minh: ∆𝐵𝐼𝐷=∆𝐶𝐼𝐸c)Chứng minh AI là phân giác của góc BACd)Gọi M là trung điểm của BC. Chứng minh rằng A, I, M thẳng hàng. giúp mình nhé
Cho tam giác ABC. Lấy điểm D trên AB, lấy E trên AC sao cho AD = AE.a)Chứng minh: BE = CDb)Gọi I là giao điểm của BE và CD. Chứng minh: ∆𝐵𝐼𝐷=∆𝐶𝐼𝐸c)Chứng minh AI là phân giác của góc BACd)Gọi M là trung điểm của BC. Chứng minh rằng A, I, M thẳng hàng.
Cho tam giác ABC. Lấy điểm D trên AB, lấy E trên AC sao cho AD = AE.a)Chứng minh: BE = CDb)Gọi I là giao điểm của BE và CD. Chứng minh: ∆𝐵𝐼𝐷=∆𝐶𝐼𝐸c)Chứng minh AI là phân giác của góc BACd)Gọi M là trung điểm của BC. Chứng minh rằng A, I, M thẳng hàng.
Cho tam giác ABC vuông cân đỉnh A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E, sao cho AD=AE. Gọi I là giao điểm của BE và CD, chứng minh:
a, BE=CD
b, tam giác BID = tam giác CIE
c, AI là trung trực của đoạn thẳng BC
d, Qua D vẽ đường thẳng vuông góc với BE, cắt BE ở K, cắt AC ở H, chứng minh: A là trung điểm của đoạn thẳng HC
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho AD= AE
a. Chứng minh rằng tâm giác AMB = tam giác AMC
b. Chứng minh rằng AM là tia phân giác của góc A và AM vuông góc với BC
c. Gọi K là giao điểm của AM và DE. Chưng minh AK vuông góc với DE
d. trên tia đối của tia ED lấy đeiểm F sao cho FE= MC, gọi H là trung điểm của EC. Chứng minh 3 điểm M, H, F thẳng hàng