Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

AK

Gọi a, b, c là độ dài ba cạnh của tam giác thỏa mãn: a+ b3 + c3 = 3abc. Chứng minh tam giác đều

H24
2 tháng 10 2019 lúc 17:17

dễ mà bạn . áp dụng bất đẳng thức cô-si cho ba số không âm ta có:

a^3+b^3+c^3>=3\(\sqrt[3]{a^3b^3c^3}\)=>a^3+b^3+c^3>=3abc.

dấu bằng xảy ra khi a=b=c. vậy nếu a^3+b^3+c^3=3abc thì a=b=c hay tam giac ABC là tam giác đều!!!!!!

Bình luận (0)
H24
2 tháng 10 2019 lúc 21:06

bất đẳng thức cô-si là một trong những BĐT cơ bản rất hay sử dụng khi thi HSG toán 8\(\frac{a+b}{2}>=\sqrt{ab}\)

Chứng minh (\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)=>\(a+b>=2\sqrt{ab}\)=>\(\frac{a+b}{2}>=\sqrt{ab}\)vậy nhé !!!!

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
TN
Xem chi tiết
LA
Xem chi tiết
PH
Xem chi tiết
TT
Xem chi tiết
VT
Xem chi tiết