Bài 4: Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O.
Chứng minh: M đối xứng với N qua điểm O.
Cho hình bình hành ABCD. Trên đường chéo AC lấy hai điểm E và F sao cho AE = EF = FC.
a) Tứ giác BEDF là hình gì? Vì sao?
b) Tia DF cắt BC tại M. Chứng minh: DF = 2FM.
c) Tia BE cắt AD tại N, hai đường chéo AC và BD cắt nhau tại O. Chứng minh: M đối xứng với N qua điểm O.
cho hình bình hành ABCD . Trên đường chéo ac lấy điểm E và F sao cho AE=EF=FC
a, chứng minh tứ giác BEDF là hình bình hành ? Vì sao?
b, tia DF cắt BC tại M . Chứng minh DF=2FM
c, tia BEcắt AD tại n, đường chéo AC và BD cắt nhau tại O . Chứng minh M đói xứng N qua O
Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = CF.
a) Chứng minh: tam giác AEO = tam giác CFO
b) Chứng minh: E và F đối xứng nhau qua O.
c) Từ E vẽ Ex // AC cắt BC tại I, vẽ Fy // AC cắt AD tại K.
Chứng minh rằng: Tứ giác KEIF là hình bình hành.
Cho hình bình hành ABCD, O là giao điểm của 2 đường chéo. Trên AB lấy E, trên CD lấy F sao cho AE = CF
a) Chứng minh F là điểm đối xứng với E qua O
b) Từ E dựng Ex // AC cắt BC tại I, dựng Fy // AC cắt AD tại K. Chứng minh I và K đối xứng nhau qua O
Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo. Lấy M tùy ý trên CD, OM cắt AB tại N.
a) Chứng minh: M và N đối xứng nhau qua Q.
b) Kẻ NF//AC (F ∈ BC), ME//AC (E ∈ AD) Chứng minh NFME là hình bình hành
c) Chứng minh: MN, EF, AC, BD đồng quy.
Cho hình chữ nhật ABCD, 2 đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc OA. BE cắt AD tại M, Qua P kẻ đường thẳng song song với BM cắt BC tại N và cắt AC tại F.
a) Chứng minh: BMDN là hình bình hành
b) Chứng minh: O là trung điểm EF
c) Qua E kẻ đường thẳng song song với BD cắt AD tại H, cắt CD tại I. Gọi O' là trung điểm IH. Chứng minh OO' song song DN
d) Gọi K là điểm đối xứng với D qua O'. Chứng minh: K, M, B thẳng hàng
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AD và BC. a) CM: tứ giác BEDF là hình bình hành. b) Gọi AC cắt BD tại O. Chứng minh E đối xứng cới F qua O c) Đường chéo AC cắt các đoạn thẳng BE và DF theo thứ tự tại P và Q. CMR: AP = PQ = QC. d) Gọi R là trung điểm của BP. Chứng minh tứ giác ARQE là hình bình hành. e) Tìm điều kiện của ABCD để DERQ là hình chữ nhật.
Giúp mik với, mik đang cần gấp HELP ME!( chỉ cần làm câu e thôi nhé )
Cho hình bình hành ABCD. Trên đường chéo BD lấy hai điểm E và F sao cho BE=DF nhỏ hơn 1/2 BD
a) chứng minh rằng : AF=CE
b) tia AE cắt BC tại I, tia CF cắt AD tại K. Chứng minh rằng ba đường thẳng AC, BD,và IK đồng quy.