HV

undefinedgiúp tớ vớiiiii

NT
19 tháng 1 2024 lúc 13:23

a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>\(BH=CH=\dfrac{6}{2}=3\left(cm\right)\)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2=5^2-3^2=16\)

=>\(HA=\sqrt{16}=4\left(cm\right)\)

b: Xét ΔAHB có HE là phân giác

nên \(\dfrac{AE}{EB}=\dfrac{AH}{HB}=\dfrac{4}{3}\)(1)

=>\(\dfrac{AE}{4}=\dfrac{EB}{3}\)

mà AE+EB=AB=5cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AE}{4}=\dfrac{EB}{3}=\dfrac{AE+EB}{4+3}=\dfrac{5}{7}\)

=>\(AE=\dfrac{5}{7}\cdot4=\dfrac{20}{7}\left(cm\right)\)

c: Xét ΔAHC có HF là phân giác

nên \(\dfrac{AF}{FC}=\dfrac{AH}{HC}=\dfrac{4}{3}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)

Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)

nên EF//BC

Ta có: EF//BC

BC\(\perp\)AH

Do đó: EF\(\perp\)AH

d: Xét ΔAHB vuông tại H có HE là đường cao

nên \(HE\cdot AB=HA\cdot HB\)

=>\(HE\cdot5=3\cdot4=12\)

=>\(HE=\dfrac{12}{5}=2,4\left(cm\right)\)

Xét ΔABC có EF//BC

nên \(\dfrac{EF}{BC}=\dfrac{AE}{AB}\)

=>\(\dfrac{EF}{6}=\dfrac{20}{7}:5=\dfrac{4}{7}\)

=>\(EF=\dfrac{24}{7}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TA
Xem chi tiết
LA
Xem chi tiết
NH
Xem chi tiết
DL
Xem chi tiết
ND
Xem chi tiết