TM

Giúp t câu 1,2,3 vs!! Cảm ơn nhìu ạ

TH
13 tháng 8 2022 lúc 21:39

Bài 2:

- Áp dụng bất đẳng thức Caushy, ta có:

\(\dfrac{1}{\sqrt[3]{\left(a+3b\right).1.1}}+\dfrac{1}{\sqrt[3]{\left(b+3c\right).1.1}}+\dfrac{1}{\sqrt[3]{\left(c+3a\right).1.1}}\)

\(\ge\dfrac{1}{\dfrac{a+3b+1+1}{3}}+\dfrac{1}{\dfrac{b+3c+1+1}{3}}+\dfrac{1}{\dfrac{c+3a+1+1}{3}}\)

\(=3\left(\dfrac{1}{a+3b+2}+\dfrac{1}{b+3c+2}+\dfrac{1}{c+3a+2}\right)\left(1\right)\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(3\left(\dfrac{1}{a+3b+2}+\dfrac{1}{b+3c+2}+\dfrac{1}{c+3a+2}\right)\)

\(\ge3.\dfrac{\left(1+1+1\right)^2}{a+3b+2+b+3c+2+c+3a+2}\)

\(=\dfrac{27}{4\left(a+b+c\right)+6}\)

\(=\dfrac{27}{4.\dfrac{3}{4}+6}=3\left(2\right)\)

- Từ (1), (2) ta suy ra đpcm.

- Dấu "=" xảy ra khi \(a=b=c=1\)

 

Bình luận (1)
TH
13 tháng 8 2022 lúc 22:01

Bài 1:

- Áp dụng bất đẳng thức Caushy ta có:

\(a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}=3\sqrt[3]{1^2}=3\)

- Ta có:\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\)

\(=\dfrac{a^4}{abc+2ab}+\dfrac{b^4}{abc+2bc}+\dfrac{c^4}{abc+2ca}\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(\dfrac{a^4}{abc+2ab}+\dfrac{b^4}{abc+2bc}+\dfrac{c^4}{abc+2ca}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)+3abc}\)

hay \(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\)\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)+3abc}\left(1\right)\)

Mặt khác: \(ab+bc+ca\le a^2+b^2+c^2\left(2\right)\)

- Từ (1), (2):

\(\Rightarrow\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)+3abc}=\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)+3}\)- Đặt \(a^2+b^2+c^2=x\ge3\). Khi đó ta có:

\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{x^2}{2x+3}\)

- Ta có: \(\dfrac{x^2}{2x+3}=\dfrac{x^2+\dfrac{3}{2}x-\dfrac{3}{2}x-\dfrac{9}{4}+\dfrac{9}{4}}{2x+3}\)

\(=\dfrac{\dfrac{1}{2}x\left(2x+3\right)-\dfrac{3}{4}\left(2x+3\right)+\dfrac{9}{4}}{2x+3}\)

\(=\dfrac{x}{2}-\dfrac{3}{4}+\dfrac{9}{4\left(2x+3\right)}\)

\(=\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{x}{2}-\dfrac{x}{18}-\dfrac{3}{4}-\dfrac{1}{12}\)

\(=\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{4}{9}x-\dfrac{5}{6}\left(3\right)\)

- Áp dụng bất đẳng thức Caushy ta có:

\(\left[\dfrac{2x+3}{36}+\dfrac{9}{4\left(2x+3\right)}\right]+\dfrac{4}{9}x-\dfrac{5}{6}\)

\(\ge2\sqrt{\dfrac{2x+3}{36}.\dfrac{9}{4\left(2x+3\right)}}+\dfrac{4}{9}.3-\dfrac{5}{6}\)

\(=2.\dfrac{1}{4}+\dfrac{4}{3}-\dfrac{5}{6}=1\left(4\right)\)

- Từ (3), (4) \(\Rightarrow\dfrac{x^2}{2x+3}\ge1\)

\(\Rightarrow\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b^3}{c\left(a+2\right)}+\dfrac{c^3}{a\left(b+2\right)}\ge\dfrac{x^2}{2x+3}\ge1\left(đpcm\right)\)

- Dấu "=" xảy ra khi \(a=b=c=1\)

 

 

 

 

 

 

Bình luận (0)
MY
13 tháng 8 2022 lúc 22:09

\(1;\)

\(\dfrac{a^3}{b\left(c+2\right)}+\dfrac{b}{3}+\dfrac{c+2}{9}\ge3\sqrt[3]{\dfrac{a^3}{3.9}}=a\Rightarrow\dfrac{a^3}{b\left(c+2\right)}\ge a-\dfrac{b}{3}-\dfrac{c+2}{9}\)

\(tương\) \(tự\Rightarrow\dfrac{b^3}{c\left(a+2\right)}\ge b-\dfrac{c}{3}-\dfrac{a+2}{3};\dfrac{c^3}{a\left(b+2\right)}\ge c-\dfrac{a}{3}-\dfrac{b+2}{3}\)

\(\Rightarrow\Sigma\dfrac{a^3}{b\left(c+2\right)}\ge a+b+c-\left(\dfrac{2\left(a+b+c\right)}{3}\right)=\dfrac{a+b+c}{3}\ge\dfrac{3\sqrt[3]{abc}}{3}=1\)

\(dấu:="\Leftrightarrow a=b=c=1\)

Bình luận (0)
TH
14 tháng 8 2022 lúc 9:16

Bài 3:

- Áp dụng bất đẳng thức Caushy, ta có:

\(\dfrac{ab}{1-c^2}+\dfrac{bc}{1-a^2}+\dfrac{ca}{1-b^2}\)

\(\le\dfrac{\dfrac{\left(a+b\right)^2}{4}}{\left(1-c\right)\left(1+c\right)}+\dfrac{\dfrac{\left(b+c\right)^2}{4}}{\left(1-a\right)\left(1+a\right)}+\dfrac{\dfrac{\left(c+a\right)^2}{4}}{\left(1-b\right)\left(1+b\right)}\)

\(=\dfrac{1}{4}\left[\dfrac{\left(a+b\right)^2}{\left(a+b\right)\left(1+c\right)}+\dfrac{\left(b+c\right)^2}{\left(b+c\right)\left(1+a\right)}+\dfrac{\left(c+a\right)^2}{\left(c+a\right)\left(1+b\right)}\right]\)

\(=\dfrac{1}{4}\left(\dfrac{a+b}{1+c}+\dfrac{b+c}{1+a}+\dfrac{c+a}{1+b}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{1-c}{1+c}+\dfrac{1-a}{1+a}+\dfrac{1-b}{1+b}\right)\)

\(=\dfrac{1}{4}\left[3-2.\left(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\right)\right]\left(1\right)\)

- Ta có: \(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\)

\(=1-\dfrac{1}{1+c}+1-\dfrac{1}{1+a}+1-\dfrac{1}{1+b}\)

\(=3-\left(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\right)\)

- Áp dụng bất đẳng thức Caushy-Schwarz dạng Engel, ta có:

\(\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c+3}=\dfrac{9}{1+3}=\dfrac{9}{4}\)

- Khi đó ta có: \(\dfrac{c}{1+c}+\dfrac{a}{1+a}+\dfrac{b}{1+b}\le3-\dfrac{9}{4}=\dfrac{3}{4}\left(2\right)\)

- Từ (1), (2) suy ra:

\(\dfrac{ab}{1-c^2}+\dfrac{bc}{1-a^2}+\dfrac{ca}{1-b^2}\le\dfrac{1}{4}.\left(3-2.\dfrac{3}{4}\right)=\dfrac{3}{8}\left(đpcm\right)\)

- Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

 

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
DT
Xem chi tiết
CG
Xem chi tiết
DT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết